137 resultados para POLARIZATION-MODE DISPERSION

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results of full numerical simulations of a guiding-centre soliton system with randomly birefringent SMF fibre are shown and analysed. It emerges that the soliton system becomes unstable even for small amounts of PMD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results of full numerical simulations of a guiding-centre soliton system with randomly birefringent SMF fibre are shown and analysed. It emerges that the soliton system becomes unstable even for small amounts of PMD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Having a fixed differential-group delay (DGD) term b′ in the coarse-step method results in a repetitive pattern in the autocorrelation function (ACF). We solve this problem by inserting a varying DGD term at each integration step. Furthermore we compute the range of values needed for b′ and simulate the phenomenon of polarisation mode dispersion for different statistical distributions of b′. We examine systematically the modified coarse-step method compared to the analytical model, through our simulation results. © 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this thesis is to present numerical investigations of the polarisation mode dispersion (PMD) effect. Outstanding issues on the side of the numerical implementations of PMD are resolved and the proposed methods are further optimized for computational efficiency and physical accuracy. Methods for the mitigation of the PMD effect are taken into account and simulations of transmission system with added PMD are presented. The basic outline of the work focusing on PMD can be divided as follows. At first the widely-used coarse-step method for simulating the PMD phenomenon as well as a method derived from the Manakov-PMD equation are implemented and investigated separately through the distribution of a state of polarisation on the Poincaré sphere, and the evolution of the dispersion of a signal. Next these two methods are statistically examined and compared to well-known analytical models of the probability distribution function (PDF) and the autocorrelation function (ACF) of the PMD phenomenon. Important optimisations are achieved, for each of the aforementioned implementations in the computational level. In addition the ACF of the coarse-step method is considered separately, based on the result which indicates that the numerically produced ACF, exaggerates the value of the correlation between different frequencies. Moreover the mitigation of the PMD phenomenon is considered, in the form of numerically implementing Low-PMD spun fibres. Finally, all the above are combined in simulations that demonstrate the impact of the PMD on the quality factor (Q=factor) of different transmission systems. For this a numerical solver based on the coupled nonlinear Schrödinger equation is created which is otherwise tested against the most important transmission impairments in the early chapters of this thesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel technique for determining the polarisation mode dispersion in optical fibres is described. The technique makes use of a sinusoidally frequency modulated source, and is applied to the measurement of the beat length of highly birefringent monomode fibre. The temporal delay between the two modes of the fibre is measured with a resolution of approximately ±0.6 ps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have experimentally investigated the mode dispersion property and refractive index sensitivity of dual-peak long-period fiber gratings (LPGs) that were sensitized by hydrofluoric acid (HF) etching. The nature of the coupled cladding modes close to the dispersion turning point makes the dual-peak LPGs ultrasensitive to cladding property, permitting a fine tailoring of the mode dispersion and index sensitivity by the light cladding etching method using HF acid of only 1% concentration. As an implementation of an optical biosensor, the etched device was used to detect the concentration of hemoglobin protein in a sugar solution, showing a sensitivity as high as 20 nm/1%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-cost, high-capacity optical transmission systems are required for metropolitan area networks. Direct-detected multi-carrier systems are attractive candidates, but polarization mode dispersion (PMD) is one of the major impairments that limits their performance. In this paper, we report the first experimental analysis of the PMD tolerance of a 288Gbit/s NRZ-OOK Coherent Wavelength Division Multiplexing system. The results show that this impairment is determined primarily by the subcarrier baud rate. We confirm the robustness of the system to PMD by demonstrating error-free performance over an unrepeatered 124km field-installed single-mode fiber with a negligible penalty of 0.3dB compared to the back-to-back measurements. (C) 2010 Optical Society of America

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have experimentally investigated the mode dispersion property and refractive index sensitivity of dual-peak long-period fiber gratings (LPGs) that were sensitized by hydrofluoric acid (HF) etching. The nature of the coupled cladding modes close to the dispersion turning point makes the dual-peak LPGs ultrasensitive to cladding property, permitting a fine tailoring of the mode dispersion and index sensitivity by the light cladding etching method using HF acid of only 1% concentration. As an implementation of an optical biosensor, the etched device was used to detect the concentration of hemoglobin protein in a sugar solution, showing a sensitivity as high as 20 nm/1%. © 2007 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we experimentally demonstrate the benefit of polarization insensitive dual-band optical phase conjugation for up to ten 400 Gb/s optical super-channels using a Raman amplified transmission link with a realistic span length of 75 km. We demonstrate that the resultant increase in transmission distance may be predicted analytically if the detrimental impacts of power asymmetry and polarization mode dispersion are taken into account.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we experimentally demonstrate the benefit of polarization insensitive dual-band optical phase conjugation for up to ten 400 Gb/s optical super-channels using a Raman amplified transmission link with a realistic span length of 75 km. We demonstrate that the resultant increase in transmission distance may be predicted analytically if the detrimental impacts of power asymmetry and polarization mode dispersion are taken into account.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a theoretical study and simulations of a novel fiber-spin tailoring technique to suppress the polarization impairments, namely polarization mode dispersion and polarization dependent gain (PDG), in fiber Raman amplifiers. Whereas use of depolarizer or multiplexing pump laser diodes with a final degree of pump polarization of 1% for periodically spun fiber results in PDG of about 0.3 dB, we demonstrate that application of just a two-section fiber (where the first part is short and has no spin, and the second one is periodically spun) can reduce the PDG to as low as below 0.1 dB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose and numerically analyse an asynchronous digital optical regenerator using a single-EAM loop and a novel neighbor-combine approach. It effectively re-synchronizes input signals with arbitrary phases to the local clock, and regenerates signals with high amplitude fluctuation and polarization mode dispersion. We demonstrate the application of this regenerator for 4 x 40 Gbit/s WDM to 160 Gbit/s OTDM conversion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose and numerically analyse an asynchronous digital optical regenerator using a single-EAM loop and a novel neighbor-combine approach. It effectively re-synchronizes input signals with arbitrary phases to the local clock, and regenerates signals with high amplitude fluctuation and polarization mode dispersion. We demonstrate the application of this regenerator for 4 x 40 Gbit/s WDM to 160 Gbit/s OTDM conversion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the performance through numerical simulations of a new modulation format: serial dark soliton (SDS) for wide-area 100-Gb/s applications. We compare the performance of the SDS with conventional dark soliton, amplitude-modulation phase-shift keying (also known as duobinary), nonreturn-to-zero, and return-to-zero modulation formats, when subjected to typical wide-area-network impairments. We show that the SDS has a strong chromatic dispersion and polarization-mode-dispersion tolerance, while maintaining a compact spectrum suitable for strong filtering requirement in ultradense wavelength-division-multiplexing applications. The SDS can be generated using commercially available components for 40-Gb/s applications and is cost efficient when compared with other 100-Gb/s electrical-time-division-multiplexing systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coherent optical orthogonal frequency division multiplexing (CO-OFDM) is an attractive transmission technique to virtually eliminate intersymbol interference caused by chromatic dispersion and polarization-mode dispersion. Design, development, and operation of CO-OFDM systems require simple, efficient, and reliable methods of their performance evaluation. In this paper, we demonstrate an accurate bit error rate estimation method for QPSK CO-OFDM transmission based on the probability density function of the received QPSK symbols. By comparing with other known approaches, including data-aided and nondata-aided error vector magnitude, we show that the proposed method offers the most accurate estimate of the system performance for both single channel and wavelength division multiplexing QPSK CO-OFDM transmission systems. © 2014 IEEE.