36 resultados para PMC detection model

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Social streams have proven to be the mostup-to-date and inclusive information on cur-rent events. In this paper we propose a novelprobabilistic modelling framework, called violence detection model (VDM), which enables the identification of text containing violent content and extraction of violence-related topics over social media data. The proposed VDM model does not require any labeled corpora for training, instead, it only needs the in-corporation of word prior knowledge which captures whether a word indicates violence or not. We propose a novel approach of deriving word prior knowledge using the relative entropy measurement of words based on the in-tuition that low entropy words are indicative of semantically coherent topics and therefore more informative, while high entropy words indicates words whose usage is more topical diverse and therefore less informative. Our proposed VDM model has been evaluated on the TREC Microblog 2011 dataset to identify topics related to violence. Experimental results show that deriving word priors using our proposed relative entropy method is more effective than the widely-used information gain method. Moreover, VDM gives higher violence classification results and produces more coherent violence-related topics compared toa few competitive baselines.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Storyline detection from news articles aims at summarizing events described under a certain news topic and revealing how those events evolve over time. It is a difficult task because it requires first the detection of events from news articles published in different time periods and then the construction of storylines by linking events into coherent news stories. Moreover, each storyline has different hierarchical structures which are dependent across epochs. Existing approaches often ignore the dependency of hierarchical structures in storyline generation. In this paper, we propose an unsupervised Bayesian model, called dynamic storyline detection model, to extract structured representations and evolution patterns of storylines. The proposed model is evaluated on a large scale news corpus. Experimental results show that our proposed model outperforms several baseline approaches.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Perception of Mach bands may be explained by spatial filtering ('lateral inhibition') that can be approximated by 2nd derivative computation, and several alternative models have been proposed. To distinguish between them, we used a novel set of ‘generalised Gaussian’ images, in which the sharp ramp-plateau junction of the Mach ramp was replaced by smoother transitions. The images ranged from a slightly blurred Mach ramp to a Gaussian edge and beyond, and also included a sine-wave edge. The probability of seeing Mach Bands increased with the (relative) sharpness of the junction, but was largely independent of absolute spatial scale. These data did not fit the predictions of MIRAGE, nor 2nd derivative computation at a single fine scale. In experiment 2, observers used a cursor to mark features on the same set of images. Data on perceived position of Mach bands did not support the local energy model. Perceived width of Mach bands was poorly explained by a single-scale edge detection model, despite its previous success with Mach edges (Wallis & Georgeson, 2009, Vision Research, 49, 1886-1893). A more successful model used separate (odd and even) scale-space filtering for edges and bars, local peak detection to find candidate features, and the MAX operator to compare odd- and even-filter response maps (Georgeson, VSS 2006, Journal of Vision 6(6), 191a). Mach bands are seen when there is a local peak in the even-filter (bar) response map, AND that peak value exceeds corresponding responses in the odd-filter (edge) maps.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The thesis will show how to equalise the effect of quantal noise across spatial frequencies by keeping the retinal flux (If-2) constant. In addition, quantal noise is used to study the effect of grating area and spatial frequency on contrast sensitivity resulting in the extension of the new contrast detection model describing the human contrast detection system as a simple image processor. According to the model the human contrast detection system comprises low-pass filtering due to ocular optics, addition of light dependent noise at the event of quantal absorption, high-pass filtering due to the neural visual pathways, addition of internal neural noise, after which detection takes place by a local matched filter, whose sampling efficiency decreases as grating area is increased. Furthermore, this work will demonstrate how to extract both the optical and neural modulation transfer functions of the human eye. The neural transfer function is found to be proportional to spatial frequency up to the local cut-off frequency at eccentricities of 0 - 37 deg across the visual field. The optical transfer function of the human eye is proposed to be more affected by the Stiles-Crawford -effect than generally assumed in the literature. Similarly, this work questions the prevailing ideas about the factors limiting peripheral vision by showing that peripheral optical acts as a low-pass filter in normal viewing conditions, and therefore the effect of peripheral optics is worse than generally assumed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Feature detection is a crucial stage of visual processing. In previous feature-marking experiments we found that peaks in the 3rd derivative of the luminance profile can signify edges where there are no 1st derivative peaks nor 2nd derivative zero-crossings (Wallis and George 'Mach edges' (the edges of Mach bands) were nicely predicted by a new nonlinear model based on 3rd derivative filtering. As a critical test of the model, we now use a new class of stimuli, formed by adding a linear luminance ramp to the blurred triangle waves used previously. The ramp has no effect on the second or higher derivatives, but the nonlinear model predicts a shift from seeing two edges to seeing only one edge as the added ramp gradient increases. In experiment 1, subjects judged whether one or two edges were visible on each trial. In experiment 2, subjects used a cursor to mark perceived edges and bars. The position and polarity of the marked edges were close to model predictions. Both experiments produced the predicted shift from two to one Mach edge, but the shift was less complete than predicted. We conclude that the model is a useful predictor of edge perception, but needs some modification.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Web APIs have gained increasing popularity in recent Web service technology development owing to its simplicity of technology stack and the proliferation of mashups. However, efficiently discovering Web APIs and the relevant documentations on the Web is still a challenging task even with the best resources available on the Web. In this paper we cast the problem of detecting the Web API documentations as a text classification problem of classifying a given Web page as Web API associated or not. We propose a supervised generative topic model called feature latent Dirichlet allocation (feaLDA) which offers a generic probabilistic framework for automatic detection of Web APIs. feaLDA not only captures the correspondence between data and the associated class labels, but also provides a mechanism for incorporating side information such as labelled features automatically learned from data that can effectively help improving classification performance. Extensive experiments on our Web APIs documentation dataset shows that the feaLDA model outperforms three strong supervised baselines including naive Bayes, support vector machines, and the maximum entropy model, by over 3% in classification accuracy. In addition, feaLDA also gives superior performance when compared against other existing supervised topic models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents an effective decision making system for leak detection based on multiple generalized linear models and clustering techniques. The training data for the proposed decision system is obtained by setting up an experimental pipeline fully operational distribution system. The system is also equipped with data logging for three variables; namely, inlet pressure, outlet pressure, and outlet flow. The experimental setup is designed such that multi-operational conditions of the distribution system, including multi pressure and multi flow can be obtained. We then statistically tested and showed that pressure and flow variables can be used as signature of leak under the designed multi-operational conditions. It is then shown that the detection of leakages based on the training and testing of the proposed multi model decision system with pre data clustering, under multi operational conditions produces better recognition rates in comparison to the training based on the single model approach. This decision system is then equipped with the estimation of confidence limits and a method is proposed for using these confidence limits for obtaining more robust leakage recognition results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Contemporary models of contrast integration across space assume that pooling operates uniformly over the target region. For sparse stimuli, where high contrast regions are separated by areas containing no signal, this strategy may be sub-optimal because it pools more noise than signal as area increases. Little is known about the behaviour of human observers for detecting such stimuli. We performed an experiment in which three observers detected regular textures of various areas, and six levels of sparseness. Stimuli were regular grids of horizontal grating micropatches, each 1 cycle wide. We varied the ratio of signals (marks) to gaps (spaces), with mark:space ratios ranging from 1 : 0 (a dense texture with no spaces) to 1 : 24. To compensate for the decline in sensitivity with increasing distance from fixation, we adjusted the stimulus contrast as a function of eccentricity based on previous measurements [Baldwin, Meese & Baker, 2012, J Vis, 12(11):23]. We used the resulting area summation functions and psychometric slopes to test several filter-based models of signal combination. A MAX model failed to predict the thresholds, but did a good job on the slopes. Blanket summation of stimulus energy improved the threshold fit, but did not predict an observed slope increase with mark:space ratio. Our best model used a template matched to the sparseness of the stimulus, and pooled the squared contrast signal over space. Templates for regular patterns have also recently been proposed to explain the regular appearance of slightly irregular textures (Morgan et al, 2012, Proc R Soc B, 279, 2754–2760)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As one of the most popular deep learning models, convolution neural network (CNN) has achieved huge success in image information extraction. Traditionally CNN is trained by supervised learning method with labeled data and used as a classifier by adding a classification layer in the end. Its capability of extracting image features is largely limited due to the difficulty of setting up a large training dataset. In this paper, we propose a new unsupervised learning CNN model, which uses a so-called convolutional sparse auto-encoder (CSAE) algorithm pre-Train the CNN. Instead of using labeled natural images for CNN training, the CSAE algorithm can be used to train the CNN with unlabeled artificial images, which enables easy expansion of training data and unsupervised learning. The CSAE algorithm is especially designed for extracting complex features from specific objects such as Chinese characters. After the features of articficial images are extracted by the CSAE algorithm, the learned parameters are used to initialize the first CNN convolutional layer, and then the CNN model is fine-Trained by scene image patches with a linear classifier. The new CNN model is applied to Chinese scene text detection and is evaluated with a multilingual image dataset, which labels Chinese, English and numerals texts separately. More than 10% detection precision gain is observed over two CNN models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

How are the image statistics of global image contrast computed? We answered this by using a contrast-matching task for checkerboard configurations of ‘battenberg’ micro-patterns where the contrasts and spatial spreads of interdigitated pairs of micro-patterns were adjusted independently. Test stimuli were 20 × 20 arrays with various sized cluster widths, matched to standard patterns of uniform contrast. When one of the test patterns contained a pattern with much higher contrast than the other, that determined global pattern contrast, as in a max() operation. Crucially, however, the full matching functions had a curious intermediate region where low contrast additions for one pattern to intermediate contrasts of the other caused a paradoxical reduction in perceived global contrast. None of the following models predicted this: RMS, energy, linear sum, max, Legge and Foley. However, a gain control model incorporating wide-field integration and suppression of nonlinear contrast responses predicted the results with no free parameters. This model was derived from experiments on summation of contrast at threshold, and masking and summation effects in dipper functions. Those experiments were also inconsistent with the failed models above. Thus, we conclude that our contrast gain control model (Meese & Summers, 2007) describes a fundamental operation in human contrast vision.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This Letter addresses image segmentation via a generative model approach. A Bayesian network (BNT) in the space of dyadic wavelet transform coefficients is introduced to model texture images. The model is similar to a Hidden Markov model (HMM), but with non-stationary transitive conditional probability distributions. It is composed of discrete hidden variables and observable Gaussian outputs for wavelet coefficients. In particular, the Gabor wavelet transform is considered. The introduced model is compared with the simplest joint Gaussian probabilistic model for Gabor wavelet coefficients for several textures from the Brodatz album [1]. The comparison is based on cross-validation and includes probabilistic model ensembles instead of single models. In addition, the robustness of the models to cope with additive Gaussian noise is investigated. We further study the feasibility of the introduced generative model for image segmentation in the novelty detection framework [2]. Two examples are considered: (i) sea surface pollution detection from intensity images and (ii) image segmentation of the still images with varying illumination across the scene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well known that even slight changes in nonuniform illumination lead to a large image variability and are crucial for many visual tasks. This paper presents a new ICA related probabilistic model where the number of sources exceeds the number of sensors to perform an image segmentation and illumination removal, simultaneously. We model illumination and reflectance in log space by a generalized autoregressive process and Hidden Gaussian Markov random field, respectively. The model ability to deal with segmentation of illuminated images is compared with a Canny edge detector and homomorphic filtering. We apply the model to two problems: synthetic image segmentation and sea surface pollution detection from intensity images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The detection of signals in the presence of noise is one of the most basic and important problems encountered by communication engineers. Although the literature abounds with analyses of communications in Gaussian noise, relatively little work has appeared dealing with communications in non-Gaussian noise. In this thesis several digital communication systems disturbed by non-Gaussian noise are analysed. The thesis is divided into two main parts. In the first part, a filtered-Poisson impulse noise model is utilized to calulate error probability characteristics of a linear receiver operating in additive impulsive noise. Firstly the effect that non-Gaussian interference has on the performance of a receiver that has been optimized for Gaussian noise is determined. The factors affecting the choice of modulation scheme so as to minimize the deterimental effects of non-Gaussian noise are then discussed. In the second part, a new theoretical model of impulsive noise that fits well with the observed statistics of noise in radio channels below 100 MHz has been developed. This empirical noise model is applied to the detection of known signals in the presence of noise to determine the optimal receiver structure. The performance of such a detector has been assessed and is found to depend on the signal shape, the time-bandwidth product, as well as the signal-to-noise ratio. The optimal signal to minimize the probability of error of; the detector is determined. Attention is then turned to the problem of threshold detection. Detector structure, large sample performance and robustness against errors in the detector parameters are examined. Finally, estimators of such parameters as. the occurrence of an impulse and the parameters in an empirical noise model are developed for the case of an adaptive system with slowly varying conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the detection of biased information sources in the ubiquitous code-division multiple-access (CDMA) scheme. We propose a simple modification to both the popular single-user matched-filter detector and a recently introduced near-optimal message-passing-based multiuser detector. This modification allows for detecting modulated biased sources directly with no need for source coding. Analytical results and simulations with excellent agreement are provided, demonstrating substantial improvement in bit error rate in comparison with the unmodified detectors and the alternative of source compression. The robustness of error-performance improvement is shown under practical model settings, including bias estimation mismatch and finite-length spreading codes. © 2007 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Satellite-borne scatterometers are used to measure backscattered micro-wave radiation from the ocean surface. This data may be used to infer surface wind vectors where no direct measurements exist. Inherent in this data are outliers owing to aberrations on the water surface and measurement errors within the equipment. We present two techniques for identifying outliers using neural networks; the outliers may then be removed to improve models derived from the data. Firstly the generative topographic mapping (GTM) is used to create a probability density model; data with low probability under the model may be classed as outliers. In the second part of the paper, a sensor model with input-dependent noise is used and outliers are identified based on their probability under this model. GTM was successfully modified to incorporate prior knowledge of the shape of the observation manifold; however, GTM could not learn the double skinned nature of the observation manifold. To learn this double skinned manifold necessitated the use of a sensor model which imposes strong constraints on the mapping. The results using GTM with a fixed noise level suggested the noise level may vary as a function of wind speed. This was confirmed by experiments using a sensor model with input-dependent noise, where the variation in noise is most sensitive to the wind speed input. Both models successfully identified gross outliers with the largest differences between models occurring at low wind speeds. © 2003 Elsevier Science Ltd. All rights reserved.