4 resultados para PHYSICS, APPLIED

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inference and optimization of real-value edge variables in sparse graphs are studied using the Bethe approximation and replica method of statistical physics. Equilibrium states of general energy functions involving a large set of real edge variables that interact at the network nodes are obtained in various cases. When applied to the representative problem of network resource allocation, efficient distributed algorithms are also devised. Scaling properties with respect to the network connectivity and the resource availability are found, and links to probabilistic Bayesian approximation methods are established. Different cost measures are considered and algorithmic solutions in the various cases are devised and examined numerically. Simulation results are in full agreement with the theory. © 2007 The American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent advances in our ability to watch the molecular and cellular processes of life in action-such as atomic force microscopy, optical tweezers and Forster fluorescence resonance energy transfer-raise challenges for digital signal processing (DSP) of the resulting experimental data. This article explores the unique properties of such biophysical time series that set them apart from other signals, such as the prevalence of abrupt jumps and steps, multi-modal distributions and autocorrelated noise. It exposes the problems with classical linear DSP algorithms applied to this kind of data, and describes new nonlinear and non-Gaussian algorithms that are able to extract information that is of direct relevance to biological physicists. It is argued that these new methods applied in this context typify the nascent field of biophysical DSP. Practical experimental examples are supplied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Networking encompasses a variety of tasks related to the communication of information on networks; it has a substantial economic and societal impact on a broad range of areas including transportation systems, wired and wireless communications and a range of Internet applications. As transportation and communication networks become increasingly more complex, the ever increasing demand for congestion control, higher traffic capacity, quality of service, robustness and reduced energy consumption requires new tools and methods to meet these conflicting requirements. The new methodology should serve for gaining better understanding of the properties of networking systems at the macroscopic level, as well as for the development of new principled optimization and management algorithms at the microscopic level. Methods of statistical physics seem best placed to provide new approaches as they have been developed specifically to deal with nonlinear large-scale systems. This review aims at presenting an overview of tools and methods that have been developed within the statistical physics community and that can be readily applied to address the emerging problems in networking. These include diffusion processes, methods from disordered systems and polymer physics, probabilistic inference, which have direct relevance to network routing, file and frequency distribution, the exploration of network structures and vulnerability, and various other practical networking applications. © 2013 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advances in statistical physics relating to our understanding of large-scale complex systems have recently been successfully applied in the context of communication networks. Statistical mechanics methods can be used to decompose global system behavior into simple local interactions. Thus, large-scale problems can be solved or approximated in a distributed manner with iterative lightweight local messaging. This survey discusses how statistical physics methodology can provide efficient solutions to hard network problems that are intractable by classical methods. We highlight three typical examples in the realm of networking and communications. In each case we show how a fundamental idea of statistical physics helps solve the problem in an efficient manner. In particular, we discuss how to perform multicast scheduling with message passing methods, how to improve coding using the crystallization process, and how to compute optimal routing by representing routes as interacting polymers.