15 resultados para PHOTOMETRIC PLANE

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transition of internally heated inclined plane parallel shear flows is examined numerically for the case of finite values of the Prandtl number Pr. We show that as the strength of the homogeneously distributed heat source is increased the basic flow loses stability to two-dimensional perturbations of the transverse roll type in a Hopf bifurcation for the vertical orientation of the fluid layer, whereas perturbations of the longitudinal roll type are most dangerous for a wide range of the value of the angle of inclination. In the case of the horizontal inclination transverse roll and longitudinal roll perturbations share the responsibility for the prime instability. Following the linear stability analysis for the general inclination of the fluid layer our attention is focused on a numerical study of the finite amplitude secondary travelling-wave solutions (TW) that develop from the perturbations of the transverse roll type for the vertical inclination of the fluid layer. The stability of the secondary TW against three-dimensional perturbations is also examined and our study shows that for Pr=0.71 the secondary instability sets in as a quasi-periodic mode, while for Pr=7 it is phase-locked to the secondary TW. The present study complements and extends the recent study by Nagata and Generalis (2002) in the case of vertical inclination for Pr=0.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical continuation method is carried out in a homotopy space connecting two different flows, the Plane Couette Flow (PCF) and the Laterally Heated Flow in a vertical slot (LHF). This numerical continuation method enables us to obtain an exact steady solution in PCF. The new solution has the shape of hairpin vortices (HVS: hairpin vortex solution), which is observed ubiquitously in turbulent shear flows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative evidence that establishes the existence of the hairpin vortex state (HVS) in plane Couette flow (PCF) is provided in this work. The evidence presented in this paper shows that the HVS can be obtained via homotopy from a flow with a simple geometrical configuration, namely, the laterally heated flow (LHF). Although the early stages of bifurcations of LHF have been previously investigated, our linear stability analysis reveals that the root in the LHF yields multiple branches via symmetry breaking. These branches connect to the PCF manifold as steady nonlinear amplitude solutions. Moreover, we show that the HVS has a direct bifurcation route to the Rayleigh-Bénard convection. © 2010 The American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability of internally heated inclined plane parallel shear flows is examined numerically for the case of finite value of the Prandtl number, Pr. The transition in a vertical channel has already been studied for 0≤Pr≤100 with or without the application of an external pressure gradient, where the secondary flow takes the form of travelling waves (TWs) that are spanwise-independent (see works of Nagata and Generalis). In this work, in contrast to work already reported (J. Heat Trans. T. ASME 124 (2002) 635-642), we examine transition where the secondary flow takes the form of longitudinal rolls (LRs), which are independent of the steamwise direction, for Pr=7 and for a specific value of the angle of inclination of the fluid layer without the application of an external pressure gradient. We find possible bifurcation points of the secondary flow by performing a linear stability analysis that determines the neutral curve, where the basic flow, which can have two inflection points, loses stability. The linear stability of the secondary flow against three-dimensional perturbations is also examined numerically for the same value of the angle of inclination by employing Floquet theory. We identify possible bifurcation points for the tertiary flow and show that the bifurcation can be either monotone or oscillatory. © 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small scale laboratory experiments, in which the specimen is considered to represent an element of soil in the soil mass, are essential to the evolution of fundamental theories of mechanical behaviour. In this thesis, plane strain and axisymmetric compression tests, performed on a fine sand, are reported and the results are compared with various theoretical predictions. A new apparatus is described in which cuboidal samples can be tested in either axisymmetric compression or plane strain. The plane strain condition is simulated either by rigid side platens, in the conventional manner, or by flexible side platens which also measure the intermediate principal stress. Close control of the initial porosity of the specimens is achieved by a vibratory method of sample preparation. The strength of sand is higher in plane strain than in axisymmetric compression, and the strains required to mobilize peak strength are much smaller. The difference between plane strain and axisymmetric compression behaviour is attributed to the restrictions on particle movement enforced by the plane strain condition; this results in an increase in the frictional component of shear strength. The stress conditions at failure in plane strain, including the intermediate principal stress, are accurately predicted by a theory based on the stress- dilatancy interpretation of Mohr's circles. Detailed observations of rupture modes are presented and measured rupture plane inclinations are predicted by the stress-dilatancy theory. Although good correlation with the stress-dilatancy theory is obtained during virgin loading, in both axisymmetric compression and plane strain, the stress-dilatancy rule is only obeyed during reloading if the specimen has been unloaded to approximate ambient stress conditions. The shape of the stress-strain curves during pre-peak deformation, in both plane strain and axisymmetric compression, is accurately described bv a combined parabolic-hyperbolic specification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this Interdisciplinary Higher Degrees project was the development of a high-speed method of photometrically testing vehicle headlamps, based on the use of image processing techniques, for Lucas Electrical Limited. Photometric testing involves measuring the illuminance produced by a lamp at certain points in its beam distribution. Headlamp performance is best represented by an iso-lux diagram, showing illuminance contours, produced from a two-dimensional array of data. Conventionally, the tens of thousands of measurements required are made using a single stationary photodetector and a two-dimensional mechanical scanning system which enables a lamp's horizontal and vertical orientation relative to the photodetector to be changed. Even using motorised scanning and computerised data-logging, the data acquisition time for a typical iso-lux test is about twenty minutes. A detailed study was made of the concept of using a video camera and a digital image processing system to scan and measure a lamp's beam without the need for the time-consuming mechanical movement. Although the concept was shown to be theoretically feasible, and a prototype system designed, it could not be implemented because of the technical limitations of commercially-available equipment. An alternative high-speed approach was developed, however, and a second prototype syqtem designed. The proposed arrangement again uses an image processing system, but in conjunction with a one-dimensional array of photodetectors and a one-dimensional mechanical scanning system in place of a video camera. This system can be implemented using commercially-available equipment and, although not entirely eliminating the need for mechanical movement, greatly reduces the amount required, resulting in a predicted data acquisiton time of about twenty seconds for a typical iso-lux test. As a consequence of the work undertaken, the company initiated an 80,000 programme to implement the system proposed by the author.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light occlusions are one of the most significant difficulties of photometric stereo methods. When three or more images are available without occlusion, the local surface orientation is overdetermined so that shape can be computed and the shadowed pixels can be discarded. In this paper, we look at the challenging case when only two images are available without occlusion, leading to a one degree of freedom ambiguity per pixel in the local orientation. We show that, in the presence of noise, integrability alone cannot resolve this ambiguity and reconstruct the geometry in the shadowed regions. As the problem is ill-posed in the presence of noise, we describe two regularization schemes that improve the numerical performance of the algorithm while preserving the data. Finally, the paper describes how this theory applies in the framework of color photometric stereo where one is restricted to only three images and light occlusions are common. Experiments on synthetic and real image sequences are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the problem of obtaining complete, detailed reconstructions of textureless shiny objects. We present an algorithm which uses silhouettes of the object, as well as images obtained under changing illumination conditions. In contrast with previous photometric stereo techniques, ours is not limited to a single viewpoint but produces accurate reconstructions in full 3D. A number of images of the object are obtained from multiple viewpoints, under varying lighting conditions. Starting from the silhouettes, the algorithm recovers camera motion and constructs the object's visual hull. This is then used to recover the illumination and initialize a multiview photometric stereo scheme to obtain a closed surface reconstruction. There are two main contributions in this paper: First, we describe a robust technique to estimate light directions and intensities and, second, we introduce a novel formulation of photometric stereo which combines multiple viewpoints and, hence, allows closed surface reconstructions. The algorithm has been implemented as a practical model acquisition system. Here, a quantitative evaluation of the algorithm on synthetic data is presented together with complete reconstructions of challenging real objects. Finally, we show experimentally how, even in the case of highly textured objects, this technique can greatly improve on correspondence-based multiview stereo results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the problem of obtaining 3d detailed reconstructions of human faces in real-time and with inexpensive hardware. We present an algorithm based on a monocular multi-spectral photometric-stereo setup. This system is known to capture high-detailed deforming 3d surfaces at high frame rates and without having to use any expensive hardware or synchronized light stage. However, the main challenge of such a setup is the calibration stage, which depends on the lights setup and how they interact with the specific material being captured, in this case, human faces. For this purpose we develop a self-calibration technique where the person being captured is asked to perform a rigid motion in front of the camera, maintaining a neutral expression. Rigidity constrains are then used to compute the head's motion with a structure-from-motion algorithm. Once the motion is obtained, a multi-view stereo algorithm reconstructs a coarse 3d model of the face. This coarse model is then used to estimate the lighting parameters with a stratified approach: In the first step we use a RANSAC search to identify purely diffuse points on the face and to simultaneously estimate this diffuse reflectance model. In the second step we apply non-linear optimization to fit a non-Lambertian reflectance model to the outliers of the previous step. The calibration procedure is validated with synthetic and real data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability characteristics of an incompressible viscous pressure-driven flow of an electrically conducting fluid between two parallel boundaries in the presence of a transverse magnetic field are compared and contrasted with those of Plane Poiseuille flow (PPF). Assuming that the outer regions adjacent to the fluid layer are perfectly electrically insulating, the appropriate boundary conditions are applied. The eigenvalue problems are then solved numerically to obtain the critical Reynolds number Rec and the critical wave number ac in the limit of small Hartmann number (M) range to produce the curves of marginal stability. The non-linear two-dimensional travelling waves that bifurcate by way of a Hopf bifurcation from the neutral curves are approximated by a truncated Fourier series in the streamwise direction. Two and three dimensional secondary disturbances are applied to both the constant pressure and constant flux equilibrium solutions using Floquet theory as this is believed to be the generic mechanism of instability in shear flows. The change in shape of the undisturbed velocity profile caused by the magnetic field is found to be the dominant factor. Consequently the critical Reynolds number is found to increase rapidly with increasing M so the transverse magnetic field has a powerful stabilising effect on this type of flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose an iterative procedure for the inverse problem of determining the displacement vector on the boundary of a bounded planar inclusion given the displacement and stress fields on an infinite (planar) line-segment. At each iteration step mixed boundary value problems in an elastostatic half-plane containing the bounded inclusion are solved. For efficient numerical implementation of the procedure these mixed problems are reduced to integral equations over the bounded inclusion. Well-posedness and numerical solution of these boundary integral equations are presented, and a proof of convergence of the procedure for the inverse problem to the original solution is given. Numerical investigations are presented both for the direct and inverse problems, and these results show in particular that the displacement vector on the boundary of the inclusion can be found in an accurate and stable way with small computational cost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photometric Stereo is a powerful image based 3D reconstruction technique that has recently been used to obtain very high quality reconstructions. However, in its classic form, Photometric Stereo suffers from two main limitations: Firstly, one needs to obtain images of the 3D scene under multiple different illuminations. As a result the 3D scene needs to remain static during illumination changes, which prohibits the reconstruction of deforming objects. Secondly, the images obtained must be from a single viewpoint. This leads to depth-map based 2.5 reconstructions, instead of full 3D surfaces. The aim of this Chapter is to show how these limitations can be alleviated, leading to the derivation of two practical 3D acquisition systems: The first one, based on the powerful Coloured Light Photometric Stereo method can be used to reconstruct moving objects such as cloth or human faces. The second, permits the complete 3D reconstruction of challenging objects such as porcelain vases. In addition to algorithmic details, the Chapter pays attention to practical issues such as setup calibration, detection and correction of self and cast shadows. We provide several evaluation experiments as well as reconstruction results. © 2010 Springer-Verlag Berlin Heidelberg.