4 resultados para PHOSPHOROUS

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A strategy to enhance the thermal stability of C/SiO2 hybrids for the O2-based oxidative dehydrogenation of ethylbenzene to styrene (ST) by P addition is proposed. The preparation consists of the polymerization of furfuryl alcohol (FA) on a mesoporous precipitated SiO2. The polymerization is catalyzed by oxalic acid (OA) at 160 °C (FA:OA = 250). Phosphorous was added as H3PO4 after the polymerization and before the pyrolysis that was carried out at 700 °C and will extend the overall activation procedure. Estimation of the apparent activation energies reveals that P enhances the thermal stability under air oxidation, which is a good indication for the ODH tests. Catalytic tests show that the P/C/SiO2 hybrids are readily active, selective and indeed stable in the applied reactions conditions for 60 h time on stream. Coke build-up during the reaction attributed to the P-based acidity is substantial, leading to a reduction of the surface area and pore volume. The comparison with a conventional MWCNT evidences that the P/C/SiO2 hybrids are more active and selective at high temperatures (450–475 °C) while the difference becomes negligible at lower temperature. However, the comparison with reference P/SiO2 counterparts shows a very similar yield than the hybrids but more selective to ST. The benefit of the P/C/SiO2 hybrid is the lack of stabilization period, which is observed for the P/SiO2 to create an active coke overlayer. For long term operation, P/SiO2 appears to be a better choice in terms of selectivity, which is crucial for commercialization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Melt quenched silicate glasses containing calcium, phosphorous and alkali metals have the ability to promote bone regeneration and to fuse to living bone. These glasses, including 45S5 Bioglass(A (R)) [(CaO)(26.9)(Na2O)(24.4)(SiO2)(46.1)(P2O5)(2.6)], are routinely used as clinical implants. Consequently there have been numerous studies on the structure of these glasses using conventional diffraction techniques. These studies have provided important information on the atomic structure of Bioglass(A (R)) but are of course intrinsically limited in the sense that they probe the bulk material and cannot be as sensitive to thin layers of near-surface dissolution/growth. The present study therefore uses surface sensitive shallow angle X-ray diffraction to study the formation of amorphous calcium phosphate and hydroxyapatite on Bioglass(A (R)) samples, pre-reacted in simulated body fluid (SBF). Unreacted Bioglass(A (R)) is dominated by a broad amorphous feature around 2.2 A...(-1) which is characteristic of sodium calcium silicate glass. After reacting Bioglass(A (R)) in SBF a second broad amorphous feature evolves similar to 1.6 A...(-1) which is attributed to amorphous calcium phosphate. This feature is evident for samples after only 4 h reacting in SBF and by 8 h the amorphous feature becomes comparable in magnitude to the background signal of the bulk Bioglass(A (R)). Bragg peaks characteristic of hydroxyapatite form after 1-3 days of reacting in SBF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Short rotation willow coppice (SRC) has been investigated for the influence of K, Ca, Mg, Fe and P on its pyrolysis and combustion behaviours. These metals are the typical components that appear in biomass. The willow sample was pretreated to remove salts and metals by hydrochloric acid, and this demineralised sample was impregnated with each individual metal at the same mol g biomass (2.4 × 10 mol g demineralised willow). Characterisation was performed using thermogravimetric analysis (TGA), and differential thermal analysis (DTA) for combustion. In pyrolysis, volatile fingerprints were measured by means of pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS). The yields and distribution of pyrolysis products have been influenced by the presence of the catalysts. Most notably, both potassium and phosphorous strongly catalysed the pyrolysis, modifying both the yield and distribution of reaction products. Temperature programmed combustion TGA indicates that combustion of biomass char is catalysed by all the metals, while phosphorus strongly inhibits the char combustion. In this case, combustion rates follow the order for volatile release/combustion: P>K>Fe>Raw>HCl>Mg>Ca, and for char combustion K>Fe>raw>Ca-Mg>HCl>P. The samples impregnated with phosphorus and potassium were also studied for combustion under flame conditions, and the same trend was observed, i.e. both potassium and phosphorus catalyse the volatile release/combustion, while, in char combustion, potassium is a catalyst and phosphorus a strong inhibitor, i.e. K impregnated>(faster than) raw>demineralised»P impregnated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activated sludge basins (ASBs) are a key-step in wastewater treatment processes that are used to eliminate biodegradable pollution from the water discharged to the natural environment. Bacteria found in the activated sludge consume and assimilate nutrients such as carbon, nitrogen and phosphorous under specific environmental conditions. However, applying the appropriate agitation and aeration regimes to supply the environmental conditions to promote the growth of the bacteria is not easy. The agitation and aeration regimes that are applied to activated sludge basins have a strong influence on the efficacy of wastewater treatment processes. The major aims of agitation by submersible mixers are to improve the contact between biomass and wastewater and the prevention of biomass settling. They induce a horizontal flow in the oxidation ditch, which can be quantified by the mean horizontal velocity. Mean values of 0.3-0.35 m s-1 are recommended as a design criteria to ensure best conditions for mixing and aeration (Da Silva, 1994). To give circulation velocities of this order of magnitude, the positioning and types of mixers are chosen from the plant constructors' experience and the suppliers' data for the impellers. Some case studies of existing plants have shown that measured velocities were not in the range that was specified in the plant design. This illustrates that there is still a need for design and diagnosis approach to improve process reliability by eliminating or reducing the number of short circuits, dead zones, zones of inefficient mixing and poor aeration. The objective of the aeration is to facilitate the quick degradation of pollutants by bacterial growth. To achieve these objectives a wastewater treatment plant must be adequately aerated; thus resulting in 60-80% of all energetic consummation being dedicated to the aeration alone (Juspin and Vasel, 2000). An earlier study (Gillot et al., 1997) has illustrated the influence that hydrodynamics have on the aeration performance as measure by the oxygen transfer coefficient. Therefore, optimising the agitation and aeration systems can enhance the oxygen transfer coefficient and consequently reduce the operating costs of the wastewater treatment plant. It is critically important to correctly estimate the mass transfer coefficient as any errors could result in the simulations of biological activity not being physically representative. Therefore, the transfer process was rigorously examined in several different types of process equipment to determine the impact that different hydrodynamic regimes and liquid-side film transfer coefficients have on the gas phase and the mass transfer of oxygen. To model the biological activity occurring in ASBs, several generic biochemical reaction models have been developed to characterise different biochemical reaction processes that are known as Activated Sludge Models, ASM (Henze et al., 2000). The ASM1 protocol was selected to characterise the impact of aeration on the bacteria consuming and assimilating ammonia and nitrate in the wastewater. However, one drawback of ASM protocols is that the hydrodynamics are assumed to be uniform by the use of perfectly mixed, plug flow reactors or as a number of perfectly mixed reactors in series. This makes it very difficult to identify the influence of mixing and aeration on oxygen mass transfer and biological activity. Therefore, to account for the impact of local gas-liquid mixing regime on the biochemical activity Computational Fluid Dynamics (CFD) was used by applying the individual ASM1 reaction equations as the source terms to a number of scalar equations. Thus, the application of ASM1 to CFD (FLUENT) enabled the investigation of the oxygen transfer efficiency and the carbon & nitrogen biological removal in pilot (7.5 cubic metres) and plant scale (6000 cubic metres) ASBs. Both studies have been used to validate the effect that the hydrodynamic regime has on oxygen mass transfer (the circulation velocity and mass transfer coefficient) and the effect that this had on the biological activity on pollutants such as ammonia and nitrate (Cartland Glover et al., 2005). The work presented here is one part to of an overall approach for improving the understanding of ASBs and the impact that they have in terms of the hydraulic and biological performance on the overall wastewater treatment process. References CARTLAND GLOVER G., PRINTEMPS C., ESSEMIANI K., MEINHOLD J., (2005) Modelling of wastewater treatment plants ? How far shall we go with sophisticated modelling tools? 3rd IWA Leading-Edge Conference & Exhibition on Water and Wastewater Treatment Technologies, 6-8 June 2005, Sapporo, Japan DA SILVA G. (1994). Eléments d'optimisation du transfert d'oxygène par fines bulles et agitateur séparé en chenal d'oxydation. PhD Thesis. CEMAGREF Antony ? France. GILLOT S., DERONZIER G., HEDUIT A. (1997). Oxygen transfer under process conditions in an oxidation ditch equipped with fine bubble diffusers and slow speed mixers. WEFTEC, Chicago, USA. HENZE M., GUJER W., MINO T., van LOOSDRECHT M., (2000). Activated Sludge Models ASM1, ASM2, ASM2D and ASM3, Scientific and Technical Report No. 9. IWA Publishing, London, UK. JUSPIN H., VASEL J.-L. (2000). Influence of hydrodynamics on oxygen transfer in the activated sludge process. IWA, Paris - France.