59 resultados para PHOSPHOLIPID-BILAYERS
em Aston University Research Archive
Resumo:
Objectives The aim of this work was to investigate the effect of cholesterol on the bilayer loading of drugs and their subsequent release and to investigate fatty alcohols as an alternative bilayer stabiliser to cholesterol. Methods The loading and release rates of four low solubility drugs (diazepam, ibuprofen, midazolam and propofol) incorporated within the bilayer of multilamellar liposomes which contained a range of cholesterol (0–33 mol/mol%) or a fatty alcohol (tetradecanol, hexadecanol and octadecanol) were investigated. The molecular packing of these various systems was also investigated in Langmuir monolayer studies. Key findings Loading and release of drugs within the liposome bilayer was shown to be influenced by their cholesterol content: increasing cholesterol content was shown to reduce drug incorporation and inclusion of cholesterol in the bilayer changed the release profile of propofol from zero-order, for phosphatidyl choline only liposomes, to a first-order model when 11 to 33 total molar % of cholesterol was present in the formulation. At higher bilayer concentrations substitution of cholesterol with tetradecanol was shown to have less of a detrimental impact on bilayer drug loading. However, the presence of cholesterol within the liposome bilayer was shown to reduce drug release compared with fatty alcohols. Monolayer studies undertaken showed that effective mean area per molecule for a 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) : cholesterol mixture deviated by 9% from the predicted area compared with 5% with a similar DSPC : tetradecanol mixture. This evidence, combined with cholesterol being a much more bulky structure, indicated that the condensing influence of tetradecanol was less compared with cholesterol, thus supporting the reduced impact of tetradecanol on drug loading and drug retention. Conclusions Liposomes can be effectively formulated using fatty alcohols as an alternative bilayer stabiliser to cholesterol. The general similarities in the characteristics of liposomes containing fatty alcohols or cholesterol suggest a common behavioural influence for both compounds within the bilayer.
Resumo:
Trehalose is a well known protector of biostructures like liposomes and proteins during freeze-drying, but still today there is a big debate regarding its mechanism of action. In previous experiments we have shown that trehalose is able to protect a non-phospholipid-based liposomal adjuvant (designated CAF01) composed of the cationic dimethyldioctadecylammonium (DDA) and trehalose 6,6-dibehenate (TDB) during freeze-drying [D. Christensen, C. Foged, I. Rosenkrands, H.M. Nielsen, P. Andersen, E.M. Agger, Trehalose preserves DDA/TDB liposomes and their adjuvant effect during freeze-drying, Biochim. Biophys. Acta, Biomembr. 1768 (2007) 2120-2129]. Furthermore it was seen that TDB is required for the stabilizing effect of trehalose. Herein, we show using the Langmuir-Blodgett technique that a high concentration of TDB present at the water-lipid interface results in a surface pressure around 67 mN/m as compared to that of pure DDA which is approximately 47 mN/m in the compressed state. This indicates that the attractive forces between the trehalose head group of TDB and water are greater than those between the quaternary ammonium head group of DDA and water. Furthermore, addition of trehalose to a DDA monolayer containing small amounts of TDB also increases the surface pressure, which is not observed in the absence of TDB. This suggests that even small amounts of trehalose groups on TDB present at the water-lipid interface associate free trehalose to the liposome surface, presumably by hydrogen bonding between the trehalose head groups of TDB and the free trehalose molecules. Hence, for CAF01 the TDB component not only stabilizes the cationic liposomes and enhances the immune response but also facilitates the cryo-/lyoprotection by trehalose through direct interaction with the head group of TDB. Furthermore the results indicate that direct interaction with liposome surfaces is necessary for trehalose to enable protection during freeze-drying.
Resumo:
Liposome systems are well reported for their activity as vaccine adjuvants; however novel lipid-based microbubbles have also been reported to enhance the targeting of antigens into dendritic cells (DCs) in cancer immunotherapy (Suzuki et al 2009). This research initially focused on the formulation of gas-filled lipid coated microbubbles and their potential activation of macrophages using in vitro models. Further studies in the thesis concentrated on aqueous-filled liposomes as vaccine delivery systems. Initial work involved formulating and characterising four different methods of producing lipid-coated microbubbles (sometimes referred to as gas-filled liposomes), by homogenisation, sonication, a gas-releasing chemical reaction and agitation/pressurisation in terms of stability and physico-chemical characteristics. Two of the preparations were tested as pressure probes in MRI studies. The first preparation composed of a standard phospholipid (DSPC) filled with air or nitrogen (N2), whilst in the second method the microbubbles were composed of a fluorinated phospholipid (F-GPC) filled with a fluorocarbon saturated gas. The studies showed that whilst maintaining high sensitivity, a novel contrast agent which allows stable MRI measurements of fluid pressure over time, could be produced using lipid-coated microbubbles. The F-GPC microbubbles were found to withstand pressures up to 2.6 bar with minimal damage as opposed to the DSPC microbubbles, which were damaged at above 1.3 bar. However, it was also found that DSPC-filled with N2 microbubbles were also extremely robust to pressure and their performance was similar to that of F-GPC based microbubbles. Following on from the MRI studies, the DSPC-air and N2 filled lipid-based microbubbles were assessed for their potential activation of macrophages using in vitro models and compared to equivalent aqueous-filled liposomes. The microbubble formulations did not stimulate macrophage uptake, so studies thereafter focused on aqueous-filled liposomes. Further studies concentrated on formulating and characterising, both physico-chemically and immunologically, cationic liposomes based on the potent adjuvant dimethyldioctadecylammonium (DDA) and immunomodulatory trehalose dibehenate (TDB) with the addition of polyethylene glycol (PEG). One of the proposed hypotheses for the mechanism behind the immunostimulatory effect obtained with DDA:TDB is the ‘depot effect’ in which the liposomal carrier helps to retain the antigen at the injection site thereby increasing the time of vaccine exposure to the immune cells. The depot effect has been suggested to be primarily due to their cationic nature. Results reported within this thesis demonstrate that higher levels of PEG i.e. 25 % were able to significantly inhibit the formation of a liposome depot at the injection site and also severely limit the retention of antigen at the site. This therefore resulted in a faster drainage of the liposomes from the site of injection. The versatility of cationic liposomes based on DDA:TDB in combination with different immunostimulatory ligands including, polyinosinic-polycytidylic acid (poly (I:C), TLR 3 ligand), and CpG (TLR 9 ligand) either entrapped within the vesicles or adsorbed onto the liposome surface was investigated for immunogenic capacity as vaccine adjuvants. Small unilamellar (SUV) DDA:TDB vesicles (20-100 nm native size) with protein antigen adsorbed to the vesicle surface were the most potent in inducing both T cell (7-fold increase) and antibody (up to 2 log increase) antigen specific responses. The addition of TLR agonists poly(I:C) and CpG to SUV liposomes had small or no effect on their adjuvanticity. Finally, threitol ceramide (ThrCer), a new mmunostimulatory agent, was incorporated into the bilayers of liposomes composed of DDA or DSPC to investigate the uptake of ThrCer, by dendritic cells (DCs), and presentation on CD1d molecules to invariant natural killer T cells. These systems were prepared both as multilamellar vesicles (MLV) and Small unilamellar (SUV). It was demonstrated that the IFN-g secretion was higher for DDA SUV liposome formulation (p<0.05), suggesting that ThrCer encapsulation in this liposome formulation resulted in a higher uptake by DCs.
Resumo:
Purpose: Surfactant proteins A, B, C and D complex with (phospho)lipids to produce surfactants which provide low interfacial tensions. It is likely that similar complexation occurs in the tear film and contributes to its low surface tension. Synthetic protein-phospholipid complexes, with styrene maleic anhydrides (SMAs) as the protein analogue, have been shown to have similarly low surface tensions. This study investigates the potential of modified SMAs and/or SMA-phospholipid complexes, which form under physiological conditions, to supplement natural tear film surfactants. Method: SMAs were modified to provide structural variants which can form complexes under varying conditions. Infrared spectroscopy and Nuclear Magnetic Resonance were used to confirm SMA structure. Interfacial behaviour of the SMA and SMA-phospholipid complexes was studied using Langmuir trough, du Nûoy ring and pulsating bubblemethods. Factors which affect SMA-phospholipid complex formation, such as temperature and pH, were also investigated. Results: Structural manipulation of SMAs allows control over complex formation, including under physiological conditions (e.g. partial SMAesterfication allowed complexation with dimyristoylphosphatidylcholine, at pH7). The low surface tensions of the SMAs (42mN/m for static (du Nûoy ring) and 34mN/m for dynamic (Langmuir) techniques) demonstrate their surface activity at the air-aqueous interface. SMA-phospholipid complexes provide even lower surface tensions (~2 mN/m), approaching that of lung surfactant, as measured by the pulsating bubblemethod. Conclusions: Design of the molecular architecture of SMAs allows control over their surfactant properties. These SMAs could be used as novel tear films supplements, either alone to complex with native tear film phospholipids or delivered as synthetic protein-phospholipid complexes.
Resumo:
Aim: Topical application of ophthalmic drugs is very inefficient; contact lenses used as drug delivery devices could minimize the drug loss and side effects. Styrene-maleic acid copolymers (PSMA) can form polymer-phospholipid complexes with dipalmitoyl phosphatidylcholine (DMPC) in the form of nanometric vesicles, which can easily solubilise hydrophobic drugs. They can be dispersed on very thin contact lens coatings to immobilize the drug on their surface. Methods: Two types of complexes stable at different pH values (5 and 7 respectively) where synthesized and loaded with drugs of different hydrophilicities during their formation process. The drug release was studied in vitro and compared to the free drug. Results: The mean sizes of the complexes obtained by light scattering were 50 nm and 450 nm respectively with low polydispersities. However, they were affected by the drugs load and release. An increase was observed in the duration of the release in the case of hydrophobic drugs, from days to weeks, avoiding initial “burst” and with a lesser amount of total drug released due to the interaction of the drug with the phospholipid core. The size and charge of the different drugs and the complexes nature also affected the release profile. Conclusions: Polymer-phospholipid complexes in the form of nanoparticles can be used to solubilise and release hydrophobic drugs in a controlled way. The drug load and release can be optimised to reach therapeutic values in the eye.
Resumo:
HOCl-modified low-density lipoprotein (LDL) has proinflammatory effects, including induction of inflammatory cytokine production, leukocyte adhesion, and ROS generation, but the components responsible for these effects are not completely understood. HOCl and the myeloperoxidase-H2O2-halide system can modify both protein and lipid moieties of LDL and react with unsaturated phospholipids to form chlorohydrins. We investigated the proinflammatory effects of 1-stearoyl-2-oleoyl-sn-3-glycerophosphocholine (SOPC) chlorohydrin on artery segments and spleen-derived leukocytes from ApoE-/- and C57 Bl/6 mice. Treatment of ApoE-/- artery segments with SOPC chlorohydrin, but not unmodified SOPC, caused increased leukocyte-arterial adhesion in a time- and concentration-dependent manner. This could be prevented by pretreatment of the artery with P-selectin or ICAM-1-blocking antibodies, but not anti-VCAM-1 antibody, and immunohistochemistry showed that P-selectin expression was upregulated. However, chlorohydrin treatment of leukocytes did not increase expression of adhesion molecules LFA-1 or PSGL-1, but caused increased release of ROS from PMA-stimulated leukocytes by a CD36-dependent mechanism. The SOPC chlorohydrin-induced adhesion and ROS generation could be abrogated by pretreatment of the ApoE-/- mice with pravastatin or a nitrated derivative, NCX 6550. These findings suggest that phospholipid chlorohydrins formed in HOCl-treated LDL could contribute to the proinflammatory effects observed for this modified lipoprotein in vitro.
Resumo:
The generation of reactive oxygen species is a central feature of inflammation that results in the oxidation of host phospholipids. Oxidized phospholipids, such as 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (OxPAPC), have been shown to inhibit signaling induced by bacterial lipopeptide or lipopolysac-charide (LPS), yet the mechanisms responsible for the inhibition of Toll-like receptor (TLR) signaling by OxPAPC remain incompletely understood. Here, we examined the mechanisms by which OxPAPC inhibits TLR signaling induced by diverse ligands in macrophages, smooth muscle cells, and epithelial cells. OxPAPC inhibited tumor necrosis factor- production, IB degradation, p38 MAPK phosphorylation, and NF-B-dependent reporter activation induced by stimulants of TLR2 and TLR4 (Pam3CSK4 and LPS) but not by stimulants of other TLRs (poly(I·C), flagellin, loxoribine, single-stranded RNA, or CpG DNA) in macrophages and HEK-293 cells transfected with respective TLRs and significantly reduced inflammatory responses in mice injected subcutaneously or intraperitoneally with Pam3CSK4. Serum proteins, including CD14 and LPS-binding protein, were identified as key targets for the specificity of TLR inhibition as supplementation with excess serum or recombinant CD14 or LBP reversed TLR2 inhibition by OxPAPC, whereas serum accessory proteins or expression of membrane CD14 potentiated signaling via TLR2 and TLR4 but not other TLRs. Binding experiments and functional assays identified MD2 as a novel additional target of OxPAPC inhibition of LPS signaling. Synthetic phospholipid oxidation products 1-palmitoyl-2-(5-oxovaleryl)-sn-glycero-3-phosphocholine and 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine inhibited TLR2 signaling from 30 µM. Taken together, these results suggest that oxidized phospholipid-mediated inhibition of TLR signaling occurs mainly by competitive interaction with accessory proteins that interact directly with bacterial lipids to promote signaling via TLR2 or TLR4.
Resumo:
The oxidation of lipids has long been a topic of interest in biological and food sciences, and the fundamental principles of non-enzymatic free radical attack on phospholipids are well established, although questions about detail of the mechanisms remain. The number of end products that are formed following the initiation of phospholipid peroxidation is large, and is continually growing as new structures of oxidized phospholipids are elucidated. Common products are phospholipids with esterified isoprostane-like structures and chain-shortened products containing hydroxy, carbonyl or carboxylic acid groups; the carbonyl-containing compounds are reactive and readily form adducts with proteins and other biomolecules. Phospholipids can also be attacked by reactive nitrogen and chlorine species, further expanding the range of products to nitrated and chlorinated phospholipids. Key to understanding the mechanisms of oxidation is the development of advanced and sensitive technologies that enable structural elucidation. Tandem mass spectrometry has proved invaluable in this respect and is generally the method of choice for structural work. A number of studies have investigated whether individual oxidized phospholipid products occur in vivo, and mass spectrometry techniques have been instrumental in detecting a variety of oxidation products in biological samples such as atherosclerotic plaque material, brain tissue, intestinal tissue and plasma, although relatively few have achieved an absolute quantitative analysis. The levels of oxidized phospholipids in vivo is a critical question, as there is now substantial evidence that many of these compounds are bioactive and could contribute to pathology. The challenges for the future will be to adopt lipidomic approaches to map the profile of oxidized phospholipid formation in different biological conditions, and relate this to their effects in vivo. This article is part of a Special Issue entitled: Oxidized phospholipids-their properties and interactions with proteins.
Resumo:
Hypercoiling polymers can be suited for application to living systems because they are similar in structure to the protein-based lipid assemblies found at fluid interfaces within the body. This leads to a range of exciting possibilities, not only in membrane transport applications but also in biosensors, drug delivery and mechanistic studies of biological membrane function. This study is focused in the study of the stability and suitability of nanostructures made of a hypercoiling polymer for drug delivery applications. The polymer poly (styrene-maleic acid) (PSMA) was combined with the phospholipid dimyristoylphosphatidylcholine (DMPC) to form amphiphilic nanostructures. The stability and suitability of these polymer-phospholipid nanocarriers for hydrophobic and hydrophilic molecules load and release was analyzed by several techniques. It was found that several of the studied molecules had a substantial effect on the surface charge and stability of the nanocarrier. It was also demonstrated that two types of nanocarriers, chemically modified and unmodified, were able to control the release of the molecules, especially in the case of hydrophobic compounds. In addition, as the hydrophobicity increased the release slowed down. These clear nanocarriers have the potential to behave very favorably at interfaces such as the tear lipid film were transparency is a requirement, giving a new way of controlled drug release in the eye.
Resumo:
Toll-like receptors (TLRs) serve to initiate inflammatory signalling in response to the detection of conserved microbial molecules or products of host tissue damage. Recent evidence suggests that TLR-signalling plays a considerable role in a number of inflammatory diseases, including atherosclerosis and arthritis. Agents which modulate TLR-signalling are, therefore, receiving interest in terms of their potential to modify inflammatory disease processes. One such family of molecules, the oxidised phospholipids (OxPLs), which are formed as a result of inflammatory events and accumulate at sites of chronic inflammation, have been shown to modulate TLR-signalling in both in vitro and in vivo systems. As the interaction between OxPLs and TLRs may play a significant role in chronic inflammatory disease processes, consideration is given in this review to the potential role of OxPLs in the regulation of TLR-signalling.
Resumo:
The oxidation of low-density lipoprotein (LDL) is thought to contribute to atherogenesis, which is an inflammatory disease involving activation of phagocytic cells. Myeloperoxidase, an enzyme which is able to produce hypochlorous acid (HOCl), is released from these phagocytic cells, and has been found in an active form in atherosclerotic plaques. HOCl can oxidize both the lipid and protein moiety of LDL, and HOCl-modified LDL has been found to be pro-inflammatory, although it is not known which component is responsible for this effect. As HOCl can oxidize lipids to give chlorohydrins, we hypothesized that phospholipid chlorohydrins might have toxic and pro-inflammatory effects. We have formed chlorohydrins from fatty acids (oleic, linoleic and arachidonic acids) and from phospholipids (stearoyl-oleoyl phosphatidylcholine, stearoyl-linoleoyl phosphatidylcholine and stearoyl-arachidonoyl phosphatidylcholine), and investigated various biological effects of these oxidation products. Fatty acid and phospholipid chlorohydrins were found to deplete ATP levels in U937 cells in a concentration-dependent manner, with significant effects observed at concentrations of 25 µM and above. Low concentrations (25 µM) of stearoyl-oleoyl phosphatidylcholine and stearoyl-arachidonoyl phosphatidylcholine chlorohydrins were also found to increase caspase-3 activity. Finally, stearoyl-oleoyl phosphatidylcholine chlorohydrin increased leukocyte adhesion to artery segments isolated from C57Bl/6 mice. These results demonstrate potentially harmful effects of lipid chlorohydrins, and suggest that they may contribute to some of the pro-inflammatory effects that HOCl-modified low density lipoprotein has been found to induce.
Resumo:
This paper discusses studies of potential atherogenic properties of phospholipid chlorohydrins. It was presented at the 13th Biennial Meeting of the Society for Free Radical Research in 2005.
Resumo:
The oxidation of lipids is important in many pathological conditions and lipid peroxidation products such as 4-hydroxynonenal (HNE) and other aldehydes are commonly measured as biomarkers of oxidative stress. However, it is often useful to complement this with analysis of the original oxidized phospholipid. Electrospray mass spectrometry (ESMS) provides an informative method for detecting oxidative alterations to phospholipids, and has been used to investigate oxidative damage to cells, and low-density lipoprotein, as well as for the analysis of oxidized phosphatidylcholines present in atherosclerotic plaque material. There is increasing evidence that intact oxidized phospholipids have biological effects; in particular, oxidation products of 1-palmitoyl-2-arachidonoyl-sn-glycerophosphocholine (PAPC) have been found to cause inflammatory responses, which could be potentially important in the progression of atherosclerosis. The effects of chlorohydrin derivatives of lipids have been much less studied, but it is clear that free fatty acid chlorohydrins and phosphatidylcholine chlorohydrins are toxic to cells at concentrations above 10 micromolar, a range comparable to that of HNE and oxidized PAPC. There is some evidence that chlorohydrins have biological effects that may be relevant to atherosclerosis, but further work is needed to elucidate their pro-inflammatory properties, and to understand the mechanisms and balance of biological effects that could result from oxidation of complex mixtures of lipids in a pathophysiological situation.
Resumo:
Chlorohydrins of stearoyl-oleoyl phosphatidylcholine (SOPC), stearoyl-linoleoyl phosphatidylcholine, and stearoyl-arachidonyl phosphatidylcholine were incubated with cultured myeloid cells (111,60) for 24 h, and the cellular ATP level was measured using a bioluminescent assay. The chlorohydrins caused significant depletion of cellular ATP in the range 10100 muM. The ATP depletion by the phospholipid chlorohydrins was slightly less than that of 4-hydroxy-2-nonenal, but greater than that of hexanal, trans-2-nonenal, and autoxidised palmitoyl-arachidonoyl phosphatidylcholine. SOPC chlorohydrin was also found to cause loss of viability in U937 cells, and thus phospholipid chlorohydrins could contribute to the formation of a necrotic core in advanced atherosclerotic lesions.
Resumo:
Measurement of lipid peroxidation is a commonly used method of detecting oxidative damage to biological tissues, but the most frequently used methods, including MS, measure breakdown products and are therefore indirect. We have coupled reversed-phase HPLC with positive-ionization electrospray MS (LC-MS) to provide a method for separating and detecting intact oxidized phospholipids in oxidatively stressed mammalian cells without extensive sample preparation. The elution profile of phospholipid hydroperoxides and chlorohydrins was first characterized using individual phospholipids or a defined phospholipid mixture as a model system. The facility of detection of the oxidized species in complex mixtures was greatly improved compared with direct-injection MS analysis, as they eluted earlier than the native lipids, owing to the decrease in hydrophobicity. In U937 and HL60 cells treated in vitro with t-butylhydroperoxide plus Fe2+, lipid oxidation could not be observed by direct injection, but LC-MS allowed the detection of monohydroperoxides of palmitoyl-linoleoyl and stearoyl-linoleoyl phosphatidylcholines. The levels of hydroperoxides observed in U937 cells were found to depend on the duration and severity of the oxidative stress. In cells treated with HOCl, chlorohydrins of palmitoyloleoyl phosphatidylcholine were observed by LC-MS. The method was able to detect very small amounts of oxidized lipids compared with the levels of native lipids present. The membrane-lipid profiles of these cells were found to be quite resistant to damage until high concentrations of oxidants were used. This is the first report of direct detection by LC-MS of intact oxidized phospholipids induced in cultured cells subjected to oxidative stress.