8 resultados para PHASE-EQUILIBRIUM

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A total pressure apparatus has been developed to measure vapour-liquid equilibrium data on binary mixtures at atmospheric and sub-atmospheric pressures. The method gives isothermal data which can be obtained rapidly. Only measurements of total pressure are made as a direct function of composition of synthetic liquid phase composition, the vapour phase composition being deduced through the Gibbs-Duhem relationship. The need to analyse either of the phases is eliminated. As such the errors introduced by sampling and analysis are removed. The essential requirements are that the pure components be degassed completely since any deficiency in degassing would introduce errors into the measured pressures. A similarly essential requirement was that the central apparatus would have to be absolutely leak-tight as any leakage of air either in or out of the apparatus would introduce erroneous pressure readings. The apparatus was commissioned by measuring the saturated vapour pressures of both degassed water and ethanol as a function of temperature. The pressure-temperature data on degassed water measured were directly compared with data in the literature, with good agreement. Similarly the pressure-temperature data were measured for ethanol, methanol and cyclohexane and where possible a direct comparison made with the literature data. Good agreement between the pure component data of this work and those available in the literature demonstrates firstly that a satisfactory degassing procedure has been achieved and that secondly the measurements of pressure-temperature are consistent for any one component; since this is true for a number of components, the measurements of both temperature and pressure are both self-consistent and of sufficient accuracy, with an observed compatibility between the precision/accuracy of the separate means of measuring pressure and temperature. The liquid mixtures studied were of ethanol-water, methanol-water and ethanol-cyclohexane. The total pressure was measured as the composition inside the equilibrium cell was varied at a set temperature. This gave P-T-x data sets for each mixture at a range of temperatures. A standard fitting-package from the literature was used to reduce the raw data to yield y-values to complete the x-y-P-T data sets. A consistency test could not be applied to the P-T-x data set as no y-values were obtained during the experimental measurements. In general satisfactory agreement was found between the data of this work and those available in the literature. For some runs discrepancies were observed, and further work recommended to eliminate the problems identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The theory of vapour-liquid equilibria is reviewed, as is the present status or prediction methods in this field. After discussion of the experimental methods available, development of a recirculating equilibrium still based on a previously successful design (the modified Raal, Code and Best still of O'Donnell and Jenkins) is described. This novel still is designed to work at pressures up to 35 bar and for the measurement of both isothermal and isobaric vapour-liquid equilibrium data. The equilibrium still was first commissioned by measuring the saturated vapour pressures of pure ethanol and cyclohexane in the temperature range 77-124°C and 80-142°C respectively. The data obtained were compared with available literature experimental values and with values derived from an extended form of the Antoine equation for which parameters were given in the literature. Commissioning continued with the study of the phase behaviour of mixtures of the two pure components as such mixtures are strongly non-ideal, showing azeotopic behaviour. Existing data did not exist above one atmosphere pressure. Isothermal measurements were made at 83.29°C and 106.54°C, whilst isobaric measurements were made at pressures of 1 bar, 3 bar and 5 bar respectively. The experimental vapour-liquid equilibrium data obtained are assessed by a standard literature method incorporating a themodynamic consistency test that minimises the errors in all the measured variables. This assessment showed that reasonable x-P-T data-sets had been measured, from which y-values could be deduced, but that the experimental y-values indicated the need for improvements in the design of the still. The final discussion sets out the improvements required and outlines how they might be attained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A ten stage laboratory mixer-settler has been designed, constructed and operated with efficiencies up to 90%. The phase equilibrium data of the system acetic acid-toluene-water at different temperatures has been determined and correlated. Trials for prediction of these data have been investigated and a good agreement between the experimental data and the predictions obtained by the NRTL equation have been found. Extraction processes have been analysed. A model for determination of the time needed for a countercurrent stage-wise process to come to steady state has been derived. The experimental data was in reasonable agreement with this model. The discrete maximum principle has been applied to optimize the countercurrent extraction process and proved to be highly successful in predicting the optimum operating conditions which were confirmed by the experimental results. The temperature has proved to be a prosolvent for mass transfer in both directions but the temperature profile functioned as an anti solvent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A periodic density functional theory method using the B3LYP hybrid exchange-correlation potential is applied to the Prussian blue analogue RbMn[Fe(CN)6] to evaluate the suitability of the method for studying, and predicting, the photomagnetic behavior of Prussian blue analogues and related materials. The method allows correct description of the equilibrium structures of the different electronic configurations with regard to the cell parameters and bond distances. In agreement with the experimental data, the calculations have shown that the low-temperature phase (LT; Fe(2+)(t(6)2g, S = 0)-CN-Mn(3+)(t(3)2g e(1)g, S = 2)) is the stable phase at low temperature instead of the high-temperature phase (HT; Fe(3+)(t(5)2g, S = 1/2)-CN-Mn(2+)(t(3)2g e(2)g, S = 5/2)). Additionally, the method gives an estimation for the enthalpy difference (HT LT) with a value of 143 J mol(-1) K(-1). The comparison of our calculations with experimental data from the literature and from our calorimetric and X-ray photoelectron spectroscopy measurements on the Rb0.97Mn[Fe(CN)6]0.98 x 1.03 H2O compound is analyzed, and in general, a satisfactory agreement is obtained. The method also predicts the metastable nature of the electronic configuration of the high-temperature phase, a necessary condition to photoinduce that phase at low temperatures. It gives a photoactivation energy of 2.36 eV, which is in agreement with photoinduced demagnetization produced by a green laser.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mass transfer rates were studied using the falling drop method. Cibacron Blue 3 GA dye was the transferring solute from the salt phase to the PEG phase. Measurements were undertaken for several concentrations of the dye and the phase-forming solutes and with a range of different drop sizes, e.g. 2.8, 3.0 and 3.7 mm. The dye was observed to be present in the salt phase as finely dispersed solids but a model confirmed that the mass transfer process could still be described by an equation based upon the Whitman two-film model. The overall mass transfer coefficient increased with increasing concentration of the dye. The apparent mass transfer coefficient ranged from 1 x 10-5 to 2 x 10 -4 m/s. Further experiments suggested that mass transfer was enhanced at high concentration by several mechanisms. The dye was found to change the equilibrium composition of the two phases, leading to transfer of salt between the drop and continuous phases. It also lowered the interfacial tension (i.e. from 1.43 x 10-4 N/m for 0.01% w/w dye concentration to 1.07 x 10-4 N/m for 0.2% w/w dye concentration) between the two phases, which could have caused interfacial instabilities (Marangoni effects). The largest drops were deformable, which resulted in a significant increase in the mass transfer rate. Drop size distribution and Sauter mean drop diameter were studied on-line in a 1 litre agitated vessel using a laser diffraction technique. The effects of phase concentration, dispersed phase hold-up and impeller speed were investigated for the salt-PEG system. An increase in agitation speed in the range 300 rpm to 1000 rpm caused a decrease in mean drop diameter, e.g. from 50 m to 15 m. A characteristic bimodal drop size distribution was established within a very short time. An increase in agitation rate caused a shift of the larger drop size peak to a smaller size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a basis for the commercial separation of normal paraffins a detailed study has been made of factors affecting the adsorption of binary liquid mixtures of high molecular weight normal paraffins (C12, C16, and C20) from isooctane on type 5A molecular sieves. The literature relating to molecular sieve properties and applications, and to liquid-phase adsorption of high molecular weight normal paraffin compounds by zeolites, was reviewed. Equilibrium isotherms were determined experimentally for the normal paraffins under investigation at temperatures of 303oK, 323oK and 343oK and showed a non-linear, favourable- type of isotherm. A higher equilibrium amount was adsorbed with lower molecular weight normal paraffins. An increase in adsorption temperature resulted in a decrease in the adsorption value. Kinetics of adsorption were investigated for the three normal paraffins at different temperatures. The effective diffusivity and the rate of adsorption of each normal paraffin increased with an increase in temperature in the range 303 to 343oK. The value of activation energy was between 2 and 4 kcal/mole. The dynamic properties of the three systems were investigated over a range of operating conditions (i.e. temperature, flow rate, feed concentration, and molecular sieve size in the range 0.032 x 10-3 to 2 x 10-3m) with a packed column. The heights of adsorption zones calculated by two independent equations (one based on a constant width, constant velocity and adsorption zone and the second on a solute material balance within the adsorption zone) agreed within 3% which confirmed the validity of using the mass transfer zone concept to provide a simple design procedure for the systems under study. The dynamic capacity of type 5A sieves for n-eicosane was lower than for n-hexadecane and n-dodecane corresponding to a lower equilibrium loading capacity and lower overall mass transfer coefficient. The values of individual external, internal, theoretical and experimental overall mass transfer coefficient were determined. The internal resistance was in all cases rate-controlling. A mathematical model for the prediction of dynamic breakthrough curves was developed analytically and solved from the equilibrium isotherm and the mass transfer rate equation. The experimental breakthrough curves were tested against both the proposed model and a graphical method developed by Treybal. The model produced the best fit with mean relative percent deviations of 26, 22, and 13% for the n-dodecane, n-hexadecane, and n-eicosane systems respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the dynamics of a growing crystalline facet where the growth mechanism is controlled by the geometry of the local curvature. A continuum model, in (2+1) dimensions, is developed in analogy with the Kardar-Parisi-Zhang (KPZ) model is considered for the purpose. Following standard coarse graining procedures, it is shown that in the large time, long distance limit, the continuum model predicts a curvature independent KPZ phase, thereby suppressing all explicit effects of curvature and local pinning in the system, in the "perturbative" limit. A direct numerical integration of this growth equation, in 1+1 dimensions, supports this observation below a critical parametric range, above which generic instabilities, in the form of isolated pillared structures lead to deviations from standard scaling behaviour. Possibilities of controlling this instability by introducing statistically "irrelevant" (in the sense of renormalisation groups) higher ordered nonlinearities have also been discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A landfill represents a complex and dynamically evolving structure that can be stochastically perturbed by exogenous factors. Both thermodynamic (equilibrium) and time varying (non-steady state) properties of a landfill are affected by spatially heterogenous and nonlinear subprocesses that combine with constraining initial and boundary conditions arising from the associated surroundings. While multiple approaches have been made to model landfill statistics by incorporating spatially dependent parameters on the one hand (data based approach) and continuum dynamical mass-balance equations on the other (equation based modelling), practically no attempt has been made to amalgamate these two approaches while also incorporating inherent stochastically induced fluctuations affecting the process overall. In this article, we will implement a minimalist scheme of modelling the time evolution of a realistic three dimensional landfill through a reaction-diffusion based approach, focusing on the coupled interactions of four key variables - solid mass density, hydrolysed mass density, acetogenic mass density and methanogenic mass density, that themselves are stochastically affected by fluctuations, coupled with diffusive relaxation of the individual densities, in ambient surroundings. Our results indicate that close to the linearly stable limit, the large time steady state properties, arising out of a series of complex coupled interactions between the stochastically driven variables, are scarcely affected by the biochemical growth-decay statistics. Our results clearly show that an equilibrium landfill structure is primarily determined by the solid and hydrolysed mass densities only rendering the other variables as statistically "irrelevant" in this (large time) asymptotic limit. The other major implication of incorporation of stochasticity in the landfill evolution dynamics is in the hugely reduced production times of the plants that are now approximately 20-30 years instead of the previous deterministic model predictions of 50 years and above. The predictions from this stochastic model are in conformity with available experimental observations.