20 resultados para PHAGOCYTES

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phagocytic cells produce a variety of oxidants as part of the immune defence, which react readily both with proteins and lipids, and could contribute to the oxidation of low density lipoprotein in atherosclerosis. We have investigated the oxidation of phospholipid vesicles by neutrophils and mononuclear cells, to provide a model of lipid oxidation in the absence of competing protein. Phorbol 12-myristate 13-acetate-stimulated neutrophils were incubated with phospholipid vesicles containing dipalmitoyl phosphatidylcholine, palmitoyl-arachidonoyl phosphatidylcholine (PAPC) and stearoyl-oleoyl phosphatidylcholine, before extraction of the lipids for analysis by HPLC coupled to electrospray mass spectrometry. The formation of monohydroperoxides (814 m/z) and bis-hydroperoxides (846 m/z) of PAPC was observed. However, the major oxidized product occurred at 828 m/z, and was identified as 1-palmitoyl-2-(5,6-epoxyisoprostane E-2)-sn-glycero-3-phosphocholine. These products were also formed in incubations where the neutrophils were replaced by mononuclear cells, and the amounts produced per million cells were similar. These results show that following oxidative attack by phagocytes stimulated by PMA, intact phospholipid oxidation products can be detected. The identification of an epoxyisoprostane phospholipid as the major product of phagocyte-induced phospholipid oxidation is novel, and in view of its inflammatory properties has implications for phagocyte involvement in atherogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid clearance of dying cells is a vital feature of apoptosis throughout development, tissue homeostasis and resolution of inflammation. The phagocytic removal of apoptotic cells is mediated by both professional and amateur phagocytes, armed with a series of pattern recognition receptors that participate in host defence and apoptotic cell clearance. CD14 is one such molecule. It is involved in apoptotic cell clearance (known to be immunosuppressive and anti-inflammatory) and binding of the pathogen-associated molecular pattern, lipopolysaccharides (a pro-inflammatory event). Thus CD14 is involved in the assembly of two distinct ligand-dependent macrophage responses. This project sought to characterise the involvement of the innate immune system, particularly CD14, in the removal of apoptotic cells. The role of non-myeloid CD14 was also considered and the data suggests that the expression of CD14 by phagocytes may define their professional status as phagocytes. To assess if differential CD14 ligation causes the ligand-dependent divergence in macrophage responses, a series of CD14 point mutants were used to map the binding of apoptotic cells and lipopolysaccharides. Monoclonal antibodies, 61D3 and MEM18, known to interfere with ligand-binding and responses, were also mapped. Data suggests that residue 11 of CD14, is key for the binding of 61D3 (but not MEM18), LPS and apoptotic cells, indicating lipopolysaccharides and apoptotic cells bind to similar residues. Furthermore using an NF-kB reporter, results show lipopolysaccharides but not apoptotic cells stimulate NF-kB. Taken together these data suggests ligand-dependent CD14 responses occur via a mechanism that occurs downstream of CD14 ligation but upstream of NF-?B activation. Alternatively apoptotic cell ligation of CD14 may not result in any signalling event, possibly by exclusion of TLR-4, suggesting that engulfment receptors, (e.g. TIM-4, BAI1 and Stablin-2) are required to mediate the uptake of apoptotic cells and the associated anti-inflammatory response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Apoptosis is a highly controlled cell death programme that culminates in the exposure of molecular ‘flags’ at the dying cell surface that permit recognition and removal by viable phagocytes. Failure to efficiently remove dying cells can lead to devastating inflammatory and autoimmune disorders. The molecular mechanisms underlying apoptotic cell surface changes are poorly understood. Our previous work has shown an apoptosis-associated functional change in ICAM-3 (a heavily glycosylated, leukocyte-restricted Immunoglobulin Super-Family member) resulting in a molecular ‘flag’ to mediate corpse removal. Here we detail apoptosis-associated changes in ICAM-3 and define their role in ICAM-3’s novel function in apoptotic cell clearance. We show ICAM-3 functions to tether apoptotic leukocytes to macrophages via an undefined receptor. Though CD14 has been suggested as a possible receptor for apoptotic cell-associated ICAM-3, we demonstrate ICAM-3 functions for apoptotic cell clearance in the absence of CD14. Furthermore, we demonstrate leukocytes display early changes in cell surface glycosylation and a marked reduction in ICAM-3, a change that correlates reduced cell volume throughout apoptosis. This loss of ICAM-3 occurs via shedding of ICAM-3 in microparticles (‘apoptotic bodies’). Such microparticles are potent chemoattractants for macrophages. Notably, microparticles from ICAM-3-deficient leukocytes are significantly less chemoattractive than microparticles from their ICAM-3-replete counterparts. These data support the hypothesis that ICAM-3 acts as an apoptotic cell-associated ligand to tether dying cells to phagocytes in a CD14-independent manner. Furthermore our data suggest that released ICAM-3 may promote the recruitment of phagocytes to sites of apoptosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cells undergoing apoptosis in vivo are rapidly detected and cleared by phagocytes. Swift recognition and removal of apoptotic cells is important for normal tissue homeostasis and failure in the underlying clearance mechanisms has pathological consequences associated with inflammatory and auto-immune diseases. Cell cultures in vitro usually lack the capacity for removal of non-viable cells because of the absence of phagocytes and, as such, fail to emulate the healthy in vivo micro-environment from which dead cells are absent. While a key objective in cell culture is to maintain viability at maximal levels, cell death is unavoidable and non-viable cells frequently contaminate cultures in significant numbers. Here we show that the presence of apoptotic cells in monoclonal antibody-producing hybridoma cultures has markedly detrimental effects on antibody productivity. Removal of apoptotic hybridoma cells by macrophages at the time of seeding resulted in 100% improved antibody productivity that was, surprisingly to us, most pronounced late on in the cultures. Furthermore, we were able to recapitulate this effect using novel super-paramagnetic Dead-Cert Nanoparticles to remove non-viable cells simply and effectively at culture seeding. These results (1) provide direct evidence that apoptotic cells have a profound influence on their non-phagocytic neighbors in culture and (2) demonstrate the effectiveness of a simple dead-cell removal strategy for improving antibody manufacture in vitro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Damaged, aged or unwanted cells are removed from the body by an active process known as apoptosis. This highly orchestrated programme results in cell disassembly and the exposure of ‘flags’ at the dying cell surface that permit recognition and removal by viable cells (phagocytes). Efficient phagocytic removal of dying cells is essential to prevent inflammatory and autoimmune disorders. Relatively little is known of the molecular mechanisms underlying changes at the apoptotic cell surface. We have previously shown that ICAM-3 (a heavily glycosylated, leukocyte-restricted Immunoglobulin Super-Family member) undergoes a change of function as cells die so that it acts as a molecular ‘flag’ to mediate corpse removal. Our work seeks to characterise apoptosis-associated changes in ICAM-3 and define their role in ICAM-3’s novel function in apoptotic cell clearance. Here we extend earlier studies to show that apoptotic cell-associated ICAM-3 functions, at least minimally, to tether apoptotic leukocytes to macrophages via an undefined receptor. Whilst CD14 has been suggested as a possible innate immune receptor for apoptotic cell-associated ICAM-3, we demonstrate ICAM-3 functions for apoptotic cell clearance in the absence of CD14. Our data additionally indicate, that during apoptosis, leukocytes display early changes in cell surface glycosylation and a marked reduction in ICAM-3, a change that correlates with a reduction in cell volume. This reduction in ICAM-3 is explained by cell surface shedding of microparticles (‘apoptotic bodies’) that contain ICAM-3. Such microparticles, released from apoptotic leukocytes, are strongly chemoattractive for macrophages. In addition, microparticles from ICAM-3-deficient leukocytes are significantly less chemoattractive than microparticles from their ICAM-3-replete counterparts. Taken together these data support the hypothesis that ICAM-3 acts as an apoptotic cell-associated ligand to tether dying cells to phagocytes in a CD14-independent manner. Furthermore our data suggest that released ICAM-3 may promote the recruitment of phagocytes to sites of leukocyte apoptosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Programmed cell death, apoptosis, is a highly regulated process that removes damaged or unwanted cells in vivo and has significant immunological implications. Defective clearance of apoptotic cells by macrophages (professional phagocytes) is known to result in chronic inflammatory and autoimmune disease. Tissue transglutaminase 2 (TG2) is a Ca2+-dependent protein cross linking enzyme known to play an important role in a number of cell functions. Up-regulation of TG2 is thought to be involved in monocyte to macrophage differentiation and defective clearance of apoptotic cells by TG2 null mice has been described though in this context the role of TG2 is yet to be fully elucidated. Cell surface-associated TG2 is now recognized as being important in regulating cell adhesion and migration, via its association with cell surface receptors such as syndecan-4, ß1 and ß3 integrin, but its extracellular role in the clearance of apoptotic cells is still not fully explored. Our work aims to characterize the role of TG2 and its partners (e.g. syndecan-4 and ß3 integrin) in macrophage function within the framework of apoptotic cell clearance. Both THP-1 cell-derived macrophage-like cells and primary human macrophages were analyzed for the expression and function of TG2. Macrophage-apoptotic cell interaction studies in the presence of TG2 inhibitors (both cell permeable and impermeable, irreversible and active site directed) resulted in significant inhibition of interaction indicating a possible role for TG2 in apoptotic cell clearance. Macrophage cell surface TG2 and, in particular, its cell surface crosslinking activity was found to be crucial in dictating apoptotic cell clearance. Our further studies demonstrate syndecan-4 association with TG2 and imply possible cooperation of these proteins in apoptotic cell clearance. Knockdown studies of syndecan-4 reveal its importance in apoptotic cell clearance. Our current findings suggest that TG2 has a crucial but yet to be fully defined role in apoptotic cell clearance which seems to involve protein cross linking and interaction with other cell surface receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Programmed cell death, apoptosis, is a highly regulated process that removes damaged or unwanted cells in vivo and has significant immunological implications. Defective clearance of apoptotic cells by macrophages (professional phagocytes) is known to result in chronic inflammatory and autoimmune disease. Transglutaminase-2 (TG2) is a Ca2+-dependent protein crosslinking enzyme known to play an important role in apoptotic cell clearance by macrophages through an ill-defined mechanism. Several studies have implicated TG2 in the apoptosis programme e.g. raised TG2 levels in cells undergoing apoptosis; increased cell death with down-regulation of TG2; up-regulation of TG2 in monocytes upon differentiation into macrophages. Defective clearance of apoptotic cells by TG2 null mice has been described though in this context the role of TG2 is yet to be elucidated. Here we aim to characterise the role of TG2 in macrophage function with a focus on apoptotic cell clearance. THP-1 monocytes were induced to differentiate to macrophage-like cells by three different stimulants and were analysed for the presence of TG2. Macrophage-apoptotic cell interaction studies in the presence and absence of irreversible TG2 inhibitors resulted in significant inhibition of interaction indicating a possible role for TG2 in apoptotic cell clearance. TG2 was expressed at the macrophage cell surface and its association with ß3 integrin expression suggests the possible link between TG2 and ß3 integrins. Our current findings suggest that TG2 had got a crucial but yet to be defined role in apoptotic cell clearance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid elimination of cells undergoing programmed cell death (apoptosis) is vital to maintain tissue homeostasis. The phagocytic removal of apoptotic cells (AC) is mediated by innate immune molecules, professional phagocytes and amateur phagocytes that recognise "eat me" signals on the surface of the AC. CD14, a pattern recognition receptor expressed on macrophages, is widely known for its ability to recognise the pathogen-associated molecular pattern lipopolysaccharide (LPS) and promote inflammation. CD14 also mediates the binding and removal of AC, a process that is considered to be anti-inflammatory therefore suggesting CD14 is capable of producing two distinct ligand-dependent responses. Our work seeks to define the molecular mechanisms underlying the involvement of CD14 in the non-inflammatory clearance of AC. Here we describe three different differentiation strategies used to generate macrophages from the monocytic cell line THP-1. Whilst CD14 expression was increased in each macrophage model we demonstrate significant differences in the various macrophage models' abilities to respond to LPS and clear AC. We show that CD14 expression correlates with CD14-dependent AC clearance and anti-inflammatory responses to AC. However LPS responsiveness correlates, as expected, with TLR4 but not CD14 expression. These observations suggest CD14-dependent AC clearance is not dependent on TLR4. Taken together our data support the notion that CD14 ligand-dependent responses to LPS and AC are derived from changes at the macrophage surface. The nature and composition of the CD14-co-receptor complex for LPS and AC binding and consequent responses is the subject of further study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Damaged, aged or unwanted cells are removed from the body by an active process known as apoptosis. This highly orchestrated programme results in cell disassembly and the exposure of ‘flags’ at the dying cell surface that permit recognition and removal by viable cells (phagocytes). Efficient phagocytic removal of dying cells is essential to prevent inflammatory and autoimmune disorders. Relatively little is known of the molecular mechanisms underlying changes at the apoptotic cell surface. We have previously shown that ICAM-3 (a heavily glycosylated, leukocyte-restricted Immunoglobulin Super-Family member) undergoes a change of function as cells die so that it acts as a molecular ‘flag’ to mediate corpse removal. Our work seeks to characterise apoptosis-associated changes in ICAM-3 and define their role in ICAM-3’s novel function in apoptotic cell clearance. Here we extend earlier studies to show that apoptotic cell-associated ICAM-3 functions, at least minimally, to tether apoptotic leukocytes to macrophages via an undefined receptor. Whilst CD14 has been suggested as a possible innate immune receptor for apoptotic cell-associated ICAM-3, we demonstrate ICAM-3 functions for apoptotic cell clearance in the absence of CD14. Our data additionally indicate, that during apoptosis, leukocytes display early changes in cell surface glycosylation and a marked reduction in ICAM-3, a change that correlates with a reduction in cell volume. This reduction in ICAM-3 is explained by cell surface shedding of microparticles (‘apoptotic bodies’) that contain ICAM-3. Such microparticles, released from apoptotic leukocytes, are strongly chemoattractive for macrophages. In addition, microparticles from ICAM-3-deficient leukocytes are significantly less chemoattractive than microparticles from their ICAM-3-replete counterparts. Taken together these data support the hypothesis that ICAM-3 acts as an apoptotic cell-associated ligand to tether dying cells to phagocytes in a CD14-independent manner. Furthermore our data suggest that released ICAM-3 may promote the recruitment of phagocytes to sites of leukocyte apoptosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A wide range of molecules acting as apoptotic cell-associated ligands, phagocyte-associated receptors or soluble bridging molecules have been implicated within the complex sequential processes that result in phagocytosis and degradation of apoptotic cells. Intercellular adhesion molecule 3 (ICAM-3, also known as CD50), a human leukocyte-restricted immunoglobulin super-family (IgSF) member, has previously been implicated in apoptotic cell clearance, although its precise role in the clearance process is ill defined. The main objective of this work is to further characterise the function of ICAM-3 in the removal of apoptotic cells. Using a range of novel anti-ICAM-3 monoclonal antibodies (mAbs), including one (MA4) that blocks apoptotic cell clearance by macrophages, alongside apoptotic human leukocytes that are normal or deficient for ICAM-3, we demonstrate that ICAM-3 promotes a domain 1-2-dependent tethering interaction with phagocytes. Furthermore, we demonstrate an apoptosis-associated reduction in ICAM-3 that results from release of ICAM-3 within microparticles that potently attract macrophages to apoptotic cells. Taken together, these data suggest that apoptotic cell-derived microparticles bearing ICAM-3 promote macrophage chemoattraction to sites of leukocyte cell death and that ICAM-3 mediates subsequent cell corpse tethering to macrophages. The defined function of ICAM-3 in these processes and profound defect in chemotaxis noted to ICAM-3-deficient microparticles suggest that ICAM-3 may be an important adhesion molecule involved in chemotaxis to apoptotic human leukocytes. © 2012 Macmillan Publishers Limited All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Removal of unwanted, effete, or damaged cells through apoptosis, an active cell death culminating in phagocytic removal of cell corpses, is an important process throughout the immune system in development, control, and homeostasis. For example, neutrophil apoptosis is central to the resolution of acute inflammation, whereas autoreactive and virus-infected cells are similarly deleted. The AC removal process functions not only to remove cell corpses but further, to control inappropriate immune responses so that ACs are removed in an anti-inflammatory manner. Such "silent" clearance is mediated by the innate immune system via polarized monocyte/macrophage populations that use a range of PRRs and soluble molecules to promote binding and phagocytosis of ACs. Additionally, attractive signals are released from dying cells to recruit phagocytes to sites of death. Here, we review the molecular mechanisms associated with innate immune removal of and responses to ACs and outline how these may impact on tissue homeostasis and age-associated pathology (e.g., cardiovascular disease). Furthermore, we discuss how an aging innate immune system may contribute to the inflammatory consequences of aging and why the study of an aging immune system may be a useful path to advance characterization of mechanisms mediating effective AC clearance. © Society for Leukocyte Biology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell death and removal of cell corpses in a timely manner is a key event in both physiological and pathological situations including tissue homeostasis and the resolution of inflammation. Phagocytic clearance of cells dying by apoptosis is a complex sequential process comprising attraction, recognition, tethering, signalling and ultimately phagocytosis and degradation of cell corpses. A wide range of molecules acting as apoptotic cell-associated ligands, phagocyte-associated receptors or soluble bridging molecules have been implicated within this process. The role of myeloid cell CD14 in mediating apoptotic cell interactions with macrophages has long been known though key molecules and residues involved have not been defined. Here we sought to further dissect the function of CD14 in apoptotic cell clearance. A novel panel of THP-1 cell-derived phagocytes was employed to demonstrate that CD14 mediates effective apoptotic cell interactions with macrophages in the absence of detectable TLR4 whilst binding and responsiveness to LPS requires TLR4. Using a targeted series of CD14 point mutants expressed in non-myeloid cells we reveal CD14 residue 11 as key in the binding of apoptotic cells whilst other residues are reported as key for LPS binding. Importantly we note that expression of CD14 in non-myeloid cells confers the ability to bind rapidly to apoptotic cells. Analysis of a panel of epithelial cells reveals that a number naturally express CD14 and that this is competent to mediate apoptotic cell clearance. Taken together these data suggest that CD14 relies on residue 11 for apoptotic cell tethering and it may be an important tethering molecule on so called 'non-professional' phagocytes thus contributing to apoptotic cell clearance in a non-myeloid setting. Furthermore these data establish CD14 as a rapid-acting tethering molecule, expressed in monocytes, which may thus confer responsiveness of circulating monocytes to apoptotic cell derived material. © 2013 Thomas et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cells dying by apoptosis are normally cleared by phagocytes through mechanisms that can suppress inflammation and immunity. Molecules of the innate immune system, the pattern recognition receptors (PRRs), are able to interact not only with conserved structures on microbes (pathogen-associated molecular patterns, PAMPs) but also with ligands displayed by apoptotic cells. We reasoned that PRRs might therefore interact with structures on apoptotic cells-apoptotic cell-associated molecular patterns (ACAMPs)-that are analogous to PAMPs. Here we show that certain monoclonal antibodies raised against the prototypic PAMP, lipopolysaccharide (LPS), can crossreact with apoptotic cells. We demonstrate that one such antibody interacts with a constitutively expressed intracellular protein, laminin-binding protein, which translocates to the cell surface during apoptosis and can interact with cells expressing the prototypic PRR, mCD14 as well as with CD14-negative cells. Anti-LPS cross reactive epitopes on apoptotic cells colocalised with annexin V-and C1q-binding sites on vesicular regions of apoptotic cell surfaces and were released associated with apoptotic cell-derived microvesicles (MVs). These results confirm that apoptotic cells and microbes can interact with the immune system through common elements and suggest that anti-PAMP antibodies could be used strategically to characterise novel ACAMPs associated not only with apoptotic cells but also with derived MVs. © 2013 Macmillan Publishers Limited All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Apoptosis is an important cell death mechanism by which multicellular organisms remove unwanted cells. It culminates in a rapid, controlled removal of cell corpses by neighboring or recruited viable cells. Whilst many of the molecular mechanisms that mediate corpse clearance are components of the innate immune system, clearance of apoptotic cells is an anti-inflammatory process. Control of cell death is dependent on competing pro-apoptotic and anti-apoptotic signals. Evidence now suggests a similar balance of competing signals is central to the effective removal of cells, through so called 'eat me' and 'don't eat me' signals. Competing signals are also important for the controlled recruitment of phagocytes to sites of cell death. Consequently recruitment of phagocytes to and from sites of cell death can underlie the resolution or inappropriate propagation of cell death and inflammation. This article highlights our understanding of mechanisms mediating clearance of dying cells and discusses those mechanisms controlling phagocyte migration and how inappropriate control may promote important pathologies. © the authors, publisher and licensee libertas academica limited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Individuals within the aged population show an increased susceptibility to infection, implying a decline in immune function, a phenomenon known as immunosenescence. Paradoxically, an increase in autoimmune disease, such as rheumatoid arthritis, is also associated with ageing, therefore some aspects of the immune system appear to be inappropriately active in the elderly. The above evidence suggests inappropriate control of the immune system as we age. Macrophages, and their precursors monocytes, play a key role in control of the immune system. They play an important role in host defence in the form of phagocytosis, and also link the innate and adaptive immune system via antigen presentation. Macrophages also have a reparative role, as professional phagocytes of dead and dying cells. Clearance of apoptotic cells by macrophages has also been shown to directly influence immune responses in an anti-inflammatory manner. Inappropriate control of macrophage function with regards to dead cell clearance may contribute to pathology as we age. The aims of this study were to assess the impact of lipid treatment, as a model of the aged environment, on the ability of macrophages to interact with, and respond to, apoptotic cells. Using a series of in vitro cell models, responses of macrophages (normal and lipid-loaded) to apoptotic macrophages (normal and lipid-loaded) were investigated. Monocyte recruitment to apoptotic cells, a key process in resolving inflammation, was assessed in addition to cytokine responses. Data here shows, for the first time, that apoptotic macrophages (normal and lipid-loaded) induce inflammation in human monocyte-derived macrophages, a response that could drive inflammation in age-associated pathology e.g. atherosclerosis. Monoclonal antibody inhibition studies suggest the classical chemokine CX3CL1 may be involved in monocyte recruitment to apoptotic macrophages, but not apoptotic foam cells, therefore differential clearance strategies may be employed following lipid-loading. CD14, an important apoptotic cell tethering receptor, was not found to have a prominent role in this process, whilst the role for ICAM-3 remains unclear. Additionally, a small pilot study using macrophages from young (<25) and mid-life (>40) donors was undertaken. Preliminary data was gathered to assess the ability of primary human monocyte-derived macrophages, from young and mid-life donors, to interact with, and respond to, apoptotic cells. MØ from mid-life individuals showed no significant differences in their ability to respond to immune modulation by apoptotic cells compared to MØ from young donors. Larger cohorts would be required to investigate whether immune modulation of MØ by apoptotic cells contribute to inflammatory pathology throughout ageing.