3 resultados para PFU

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

At present there is not a reliable vaccine against herpes virus. Viral protein vaccines as yet have proved unsuccessful to meet the challenge of raising an appropriate immune response. Cantab Pharmaceuticals has produced a virus vaccine that can undergo one round of replication in the recipient in order to produce a more specific immune reaction. This virus is called Disabled Infectious Single Cycle Herpes Simplex Virus (DISC HSV) which has been derived by deleting the essential gH gene from a type 2 herpes virus. This vaccine has been proven to be effective in animal studies. Existing methods for the purification of viruses rely on laboratory techniques and for vaccine production would be on a far too small a scale. There is therefore a need for new virus purification methods to be developed in order to meet these large scale needs. An integrated process for the manufacture of a purified recombinant DISC HSV is described. The process involves culture of complementing Vero (CR2) cells, virus infection and manufacture, virus harvesting and subsequent downstream processing. The identification of suitable growth parameters for the complementing cell line and optimal limes for both infection and harvest are addressed. Various traditional harvest methods were investigated and found not to be suitable for a scaled up process. A method of harvesting, that exploits the elution of cell associated viruses by the competitive binding of exogenous heparin to virus envelope gC proteins, is described and is shown to yield significantly less contaminated process streams than sonication or osmotic approaches that involve cell rupture (with> 10-fold less complementing cell protein). High concentrations of salt (>0.8M NaCl) exhibit the same effect, although the high osmotic strength ruptures cells and increase the contamination of the process stream. This same heparin-gC protein affinity interaction is also shown to provide an efficient adsorptive purification procedure for herpes viruses which avoids the need to pre-treat the harvest material, apart from clarification, prior to chromatography. Subsequent column eluates provide product fractions with a 100-fold increase in virus titre and low levels of complementing cell protein and DNA (0.05 pg protein/pfu and 1.2 x 104 pg DNA/pfu respectively).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Placenta growth factor (PlGF) deficient mice are fertile at a Mendelian ratio. Interestingly, low maternal plasma levels of PlGF are strongly associated with early onset of preeclampsia, a pregnancy hypertensive disorder characterised by high blood pressure, proteinuria and fetal growth restriction. PlGF is increasingly being recognised as an early diagnostic biomarker, but the physiological importance of PlGF in the pathogenesis of preeclampsia is unknown. We investigated whether the decreased levels of PlGF in pregnancy exacerbate the fetal growth restriction associated with preeclampsia in the presence of high sFlt-1 and the potential of hydrogen sulphide to ameliorate these effects. Pregnant PlGF−/− mice were injected with adenovirus encoding sFlt-1 (Ad-sFlt-1) at 1 × 109 pfu/ml at E10.5 and mean arterial blood pressure (MAP), biochemical and histological analysis of maternal kidney, placenta and embryos were assessed at the end of pregnancy. Ad-sFlt-1 significantly increased MAP and induced severe glomerular endotheliosis in PlGF−/− mice compared to wild-type animals. Soluble Flt-1 also significantly elevated albumin–creatinine ratio and increased levels of urinary kidney injury molecule-1, a marker for proximal tubule injury. Furthermore, sFlt-1 over expression increased fetal resorption rate in the PlGF−/− mice and promoted abnormal placental vascularisation. To determine whether placental PlGF is critical for preventing fetal growth restriction associated with preeclampsia, we generated haploinsufficient PlGF+/− placentas and embryos in dams and exposed to high sFlt-1 environment. These mothers showed reduced fetal resorption, gestational hypertension and proteinuria when compared to pregnant PlGF−/− mice. Furthermore, treatment with hydrogen sulphide-releasing agent, GYY4137, significantly reduced resorption, hypertension and proteinuria observed in Ad-sFlt-1 treated pregnant PlGF−/− mice. Our study shows that placental PlGF is a critical protective factor against the damaging effects of high sFlt-1 associated with preeclampsia and activation of the hydrogen sulphide pathway may rescue preeclampsia phenotypes even under low PlGF environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: Low circulating levels of placenta growth factor (PlGF) is strongly associated with the onset of preeclampsia, a maternal hypertensive disorder characterized by high blood pressure and proteinuria after 20 weeks of gestation. Although, PlGF-deficient mice are born healthy and fertile at a Mendelian ratio, the physiological importance of PlGF in the pathogenesis of preeclampsia is unclear. We hypothesised that decreased levels of PlGF in pregnancy exacerbates the fetal growth restriction associated with preeclampsia in the presence of high sFlt-1. METHODS: Pregnant PlGF-/- mice were injected with adenovirus encoding sFlt-1 (Ad-sFlt-1) at high (i) 1.5x109 pfu/ml and low (ii) 0.5x109 pfu/ml doses. Mean arterial blood pressure (MBP), biochemical and histological assessments of maternal kidney, placenta and embryos were performed. RESULTS: Ad-sFlt-1 significantly increased MBP and induced severe glomerular endotheliosis in PlGF-/- mice at E10.5 gestation compared to wild-type animals. High sFlt-1 also significantly elevated albumincreatinine ratio and increased levels of urinary kidney injury molecule-1, a marker for proximal tubule injury.At a high dose of sFlt-1, there was complete fetal resorption in the pregnant PlGF-/- mice, and even the lower dose of sFlt-1 induced severe fetal resorption and abnormal placental vascularization. Hydrogen sulphide-releasing agent, GYY4137, significantly reduced resorption, hypertension and proteinuria in Ad-sFlt-1 treated pregnant PlGF-/- mice. To determine if placental PlGF is critical for preventing fetal growth restriction associated with preeclampsia, we generated haploinsufficient PlGF+/- placentas and embryos were generated in wild-time dams and exposed to high sFlt-1 environment. This resulted in reduced fetal resorption, gestational hypertension and proteinuria when compared to pregnant PlGF-/- mice. CONCLUSIONS: Placental PlGF is a critical protective factor against the damaging effects of high sFlt-1 in preeclampsia and the hydrogen sulphide pathway may rescue preeclampsia phenotypes.