2 resultados para PDE5

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research project is concerned with the design, synthesis and development of new phosphodiesterase 5 (PDE5) inhibitors with improved selectivities and lower toxicities. Two series of a 5 member and a 6 member ring fused heterocyclic compounds were designed, and synthesized. By alteration of starting materials and fragments, two virtual libraries, each is consisted of close to hundred compounds, were obtained successfully. The screening of sexual stimulation activity with rabbits demonstrated both groups of compounds were able to stimulate rabbit penile erection significantly. The following toxicity studies revealed 2-(substituted-sulfonylphenyl)-imidazo [1,5-a]-1,3,5-triazine-4-(3H)-one group possessed an unacceptable toxicity with oral LD50 about 200mg/kg; while 2-(substituted-sulfonylphenyl)-pyrrolo[2,3-d]pyrimidin-4-one group showed an acceptable toxicity with oral LD50 over 2000mg/kg. The continued bioactivity studies showed yonkenafil, the representative of 2-(substituted-sulfonylphenyl)-pyrrolo[2,3-d]pyrimidin-4-one group, has a better selectivity towards PDE5 and PDE6 than sildenafil and a better overall profile of sexual stimulation on animals than sildenafil. Chronic toxicity studies of yonkenafil further confirmed yonkenafil did not cause any serious side effect and damage on animal models and most actions were explainable. Based on evidences of the above studies, yonkenafil were recommended to enter clinical trials by the regulation authority of China, SFDA. Currently yonkenafil has been through the Phase I clinical trials and ready to progress into Phase II. Hopefully, yonkenafil will provide an alternative to the ED patients in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this research project is to evaluate whether or not pullulan films are suitable to buccal drug delivery of a phosphodiesterase5 (PDE5) inhibitor yonkenafil, which was discovered in our research group and currently is under phase II clinical trial for treatment of erectile dysfunction. Variable formulations of pullulan films were designed and the films were prepared. Mechanical properties of the films, in vitro drug release and polymer dissolution, in vitro drug penetration through porcine esophageal mucosa were investigated. The plasticization effects of solvents, polyols and acids to the films were studied by tensile test, and differential scanning calorimetry, thermogravimetric analysis, fourier transform-infrared, scanning electron microscopy, optical microscopy was applied to analyse the structure and chemical-bonding between pullulan and the additives within the films. Release mathematics models were used in the study of the mechanism of drug releases and polymer dissolutions. Ethanol, menthol, fatty acids, and sodium dodecyl sulphate were employed as penetration enhancers to pretreat the tissue. Various plasticizers and acids were applied into the films and the result showed polyethylene glycol 400 and 600 had the excellent plasticization effect on the drug-free pullulan films, while lactic acid was the best plasticizer for the drug-loaded films. Both PEG400 and lactic acid had a great effect on the drug release from the films in vitro, and all the results indicated that the hydroxyl and carboxyl groups of pullulan and the additives influenced the mechanical properties of the films significantly, and also altered drug release mechanisms. Ethanol shows the greatest enhancing ability on the drug permeation through the porcine esophageal mucosa. A possible mechanism for this is that ethanol interferes with the structure of the lipids in the mucosa, resulting in increased partitioning of the drug into the membrane.