32 resultados para PD-L1
em Aston University Research Archive
Resumo:
Our PhD study focuses on the role of aspectual marking in expressing simultaneity of events in Tunisian Arabic as a first language, French as a first language, as well as in French as a second language by Tunisian learners at different acquisitional stages. We examine how the explicit markers of on-goingness qa:’id and «en train de» in Tunisian Arabic and in French respectively are used to express this temporal relation, in competition with the simple forms, the prefixed verb form in Tunisian Arabic and the présent de l’indicatif in French. We use a complex verbal task of retelling simultaneous events sharing an interval on the time axis based on eight videos presenting two situations happening in parallel. Two types of simultaneity are exploited: perfect simultaneity (when the two situations are parallel to each other) and inclusion (one situation is framed by the second one). Our informants in French and in Tunisian Arabic have two profiles, highly educated and low educated speakers. We show that the participants’ response to the retelling task varies according to their profiles, and so does their use of the on-goingness devices in the expression of simultaneity. The differences observed between the two profile groups are explained by the degree to which the speakers have developed a habit of responding to tasks. This is a skill typically acquired during schooling. We notice overall that the use of qa:’id as well as of «en train de» is less frequent in the data than the use of the simple forms. However, qa:’id as well as «en train de» are employed to play discursive roles that go beyond the proposition level. We postulate that despite the shared features between Tunisian Arabic and French regarding marking the concept of on-goingness, namely the presence of explicit lexical, not fully grammaticalised markers competing with other non-marked forms, the way they are used in the discourse of simultaneous events shows clear differences. We explain that «en train de» plays a more contrastive role than qa:’id and its use in discourse obeys a stricter rule. In cases of the inclusion type of simultaneity, it is used to construe the ‘framing’ event that encloses the second event. In construing perfectly simultaneneous events, and when both «en train de» and présent de l’indicatif are used, the proposition with «en train de» generally precedes the proposition with présent de l’indicatif, and not the other way around. qa:id obeys, but to a less strict rule as it can be used interchangeably with the simple form regardless of the order of propositions. The contrastive analysis of French L1 and L2 reveals learners’ deviations from natives’ use of on-goingness devices. They generalise the use of «en train de» and apply different rules to the interaction of the different marked and unmarked forms in discourse. Learners do not master its role in discourse even at advanced stages of acquisition despite its possible emergence around the basic and intermediate varieties. We conclude that the native speakers’ use of «en train de» involves mastering its role at the macro-structure level. This feature, not explicitly available to learners in the input, might persistently present a challenge to L2 acquisition of the periphrasis.
Resumo:
This article uncovers the complexities and contradictions inherent in making decisions about L1 use in the English language classroom. Through an analysis of data from classrooms in a Cypriot context and from interviews with Cypriot teachers, a number of functions for L1 use are identified, as are the teachers' rationales for using L1 for different functions. Teachers' decision making, it emerges, is often complex, based on either what they perceive as their students' affective needs or on their cognitive processes.What ismore, teachers often under-report or differently report their use of L1 in the classroom, contradicting beliefs by their actions. The construct of guilt is offered to explain these complexities and contradictions in the teachers' use of L1 in this study. We conclude by suggesting that teachers should be supported in finding local solutions to local teaching problems, so that they better understand and exploit the resources available to them. © The Author 2010. Published by Oxford University Press; all rights reserved.
Resumo:
Synchronous, time-resolved DRIFTS/MS/XAS cycling studies of the vapor-phase selective aerobic oxidation of crotyl alcohol over nanoparticulate Pd have revealed surface oxide as the desired catalytically active phase, with dynamic, reaction-induced Pd redox processes controlling selective versus combustion pathways.
Resumo:
This research focuses on Native Language Identification (NLID), and in particular, on the linguistic identifiers of L1 Persian speakers writing in English. This project comprises three sub-studies; the first study devises a coding system to account for interlingual features present in a corpus of L1 Persian speakers blogging in English, and a corpus of L1 English blogs. Study One then demonstrates that it is possible to use interlingual identifiers to distinguish authorship by L1 Persian speakers. Study Two examines the coding system in relation to the L1 Persian corpus and a corpus of L1 Azeri and L1 Pashto speakers. The findings of this section indicate that the NLID method and features designed are able to discriminate between L1 influences from different languages. Study Three focuses on elicited data, in which participants were tasked with disguising their language to appear as L1 Persian speakers writing in English. This study indicated that there was a significant difference between the features in the L1 Persian corpus, and the corpus of disguise texts. The findings of this research indicate that NLID and the coding system devised have a very strong potential to aid forensic authorship analysis in investigative situations. Unlike existing research, this project focuses predominantly on blogs, as opposed to student data, making the findings more appropriate to forensic casework data.
Resumo:
Ultrathin alumina monolayers grafted onto an ordered mesoporous SBA-15 silica framework afford a composite catalyst support with unique structural properties and surface chemistry. Palladium nanoparticles deposited onto Al-SBA-15 via wet impregnation exhibit the high dispersion and surface oxidation characteristic of pure aluminas, in conjunction with the high active site densities characteristic of thermally stable, high-area mesoporous silicas. This combination confers significant rate enhancements in the aerobic selective oxidation (selox) of cinnamyl alcohol over Pd/Al-SBA-15 compared to mesoporous alumina or silica supports. Operando, liquid-phase XAS highlights the interplay between dissolved oxygen and the oxidation state of palladium nanoparticles dispersed over Al-SBA-15 towards on-stream reduction: ambient pressures of flowing oxygen are sufficient to hinder palladium oxide reduction to metal, enabling a high selox activity to be maintained, whereas rapid PdO reduction and concomitant catalyst deactivation occurs under static oxygen. Selectivity to the desired cinnamaldehyde product mirrors these trends in activity, with flowing oxygen minimising CO cleavage of the cinnamyl alcohol reactant to trans-β-methylstyrene, and of cinnamaldehyde decarbonylation to styrene. © 2013 Elsevier B.V.
Resumo:
The selective aerobic oxidation of crotyl alcohol to crotonaldehyde was investigated by time-resolved synchronous DRIFTS/MS/XAS over silica and alumina supported Pd nanoparticles. Alcohol and oxygen reactant feeds were cycled through the catalyst bed while dynamic measurements of the palladium oxidation state, molecular adsorbates and evolved product distribution were made simultaneously on a sub-second timescale. Highly dispersed palladium nanoparticles remained in a partially oxidised state
Resumo:
The thermal evolution of titania-supported Au shell–Pd core bimetallic nanoparticles, prepared via colloidal routes, has been investigated by in situ XPS, DRIFTS, EXAFS and XRD and ex situ HRTEM. As-prepared nanoparticles are terminated by a thin (∼5 layer) Au shell, encapsulating approximately 20 nm diameter cuboctahedral palladium cores, with the ensemble stabilised by citrate ligands. The net gold composition was 40 atom%. Annealing in vacuo or under inert atmosphere rapidly pyrolyses the citrate ligands, but induces only limited Au/Pd intermixing and particle growth <300 °C. Higher temperatures promote more dramatic alloying, accompanied by significant sintering and surface roughening. These changes are mirrored by the nanoparticle catalysed liquid phase selective aerobic oxidation of crotyl alcohol to crotonaldehyde; palladium surface segregation enhances both activity and selectivity, with the most active surface alloy attainable containing ∼40 atom% Au.
Resumo:
The selective oxidation of crotyl alcohol to crotonaldehyde over ultrathin Au overlayers on Pd(1 1 1) and Au/Pd(1 1 1) surface alloys has been investigated by time-resolved X-ray photoelectron spectroscopy (XPS) and mass spectrometry. Pure gold is catalytically inert towards crotyl alcohol which undergoes reversible adsorption. In contrast, thermal processing of a 3.9 monolayer (ML) gold overlayer allows access to a range of AuPd surface alloy compositions, which are extremely selective towards crotonaldehyde production, and greatly reduce the extent of hydrocarbon decomposition and eventual carbon laydown compared with base Pd(1 1 1). XPS and CO titrations suggest that palladium-rich surface alloys offer the optimal balance between alcohol oxidative dehydrogenation activity while minimising competitive decomposition pathways, and that Pd monomers are not the active surface ensemble for such selox chemistry over AuPd alloys. Crown Copyright © 2008.
Resumo:
The surface chemistry of crotonaldehyde and propene, primary and secondary reaction products in the aerobic selective oxidation of crotyl alcohol, has been studied by temperature-programmed reaction over Au/Pd(111) surface alloys. Gold strongly promotes desorption versus reaction at mole fractions ≥0.3 (crotonaldehyde) and ≥0.8 (CH); only ∼5% of the chemisorbed aldehyde or alkene react over Au-rich alloys. Surprisingly, co-adsorbed oxygen strongly suppresses crotonaldehyde decomposition over both clean Pd(111) and alloy surfaces, while CH combustion, an important undesired side-reaction over unpromoted Pd(111), is also moderated by Au. © the Owner Societies.
Resumo:
Highly ordered mesoporous alumina was prepared via evaporation induced self assembly and was impregnated to afford a family of Pd/meso-Al2O3 catalysts for the aerobic selective oxidation (selox) of allylic alcohols under mild reaction conditions. CO chemisorption and XPS identify the presence of highly dispersed (0.9–2 nm) nanoparticles comprising heavily oxidised PdO surfaces, evidencing a strong palladium-alumina interaction. Surface PdO is confirmed as the catalytically active phase responsible for allylic alcohol selox, with initial rates for Pd/meso-Al2O3 far exceeding those achievable for palladium over either amorphous alumina or mesoporous silica supports. Pd/meso-Al2O3 is exceptionally active for the atom efficient selox of diverse allylic alcohols, with activity inversely proportional to alcohol mass.
Resumo:
The aerobic selective oxidation (selox) of alcohols represents an environmentally benign and atom efficient chemical valorisation route to commercially important allylic aldehydes, such as crotonaldehyde and cinnamaldehyde, which find application in pesticides, fragrances and food additives. Palladium nanoparticles are highly active and selective heterogeneous catalysts for such oxidative dehydrogenations, permitting the use of air (or dioxygen) as a green oxidant in place of stoichiometric chromate permanganate saltsor H2O2. Here we discuss how time-resolved, in-situ X-ray spectroscopies (XAS and XPS) reveal dynamic restructuring of dispersed Pd nanoparticles and Pd single-crystals in response to changing reaction environments, and thereby identify surface PdO as the active species responsible for palladium catalysed crotyl alcohol selox (Figure 1); on-stream reduction to palladium metal under oxygen-poor regimes thus appears the primary cause of catalyst deactivation. This insight has guided the subsequent application of surfactant-templating and inorganic nanocrystal methodologies to optimize the density of desired active PdO sites for the selective oxidation of natural products such as sesquiterpenoids.
Resumo:
The utility of a hierarchically ordered nanoporous SBA-15 architecture, comprising 270 nm macropores and 5 nm mesopores (MM-SBA-15), for the catalytic aerobic selective oxidation of sterically challenging allylic alcohols is shown. Detailed bulk and surface characterization reveals that incorporation of complementary macropores into mesoporous SBA-15 enhances the dispersion of sub 2 nm Pd nanoparticles and thus their degree of surface oxidation. Kinetic profiling reveals a relationship between nanoparticle dispersion and oxidation rate, identifying surface PdO as the catalytically active phase. Hierarchical nanoporous Pd/MM-SBA-15 outperforms mesoporous analogues in allylic alcohol selective oxidation by (i) stabilizing PdO nanoparticles and (ii) dramatically improving in-pore diffusion and access to active sites by sesquiterpenoid substrates such as farnesol and phytol. © 2013 American Chemical Society.
Resumo:
Here, we report on the first application of high-pressure XPS (HP-XPS) to the surface catalyzed selective oxidation of a hydrocarbon over palladium, wherein the reactivity of metal and oxide surfaces in directing the oxidative dehydrogenation of crotyl alcohol (CrOH) to crotonaldehyde (CrHCO) is evaluated. Crotonaldehyde formation is disfavored over Pd(111) under all reaction conditions, with only crotyl alcohol decomposition observed. In contrast, 2D Pd5O4 and 3D PdO overlayers are able to selectively oxidize crotyl alcohol (1 mTorr) to crotonaldehyde in the presence of co-fed oxygen (140 mTorr) at temperatures as low as 40 °C. However, 2D Pd5O4 ultrathin films are unstable toward reduction by the alcohol at ambient temperature, whereas the 3D PdO oxide is able to sustain catalytic crotonaldehyde production even up to 150 °C. Co-fed oxygen is essential to stabilize palladium surface oxides toward in situ reduction by crotyl alcohol, with stability increasing with oxide film dimensionality.
Resumo:
In-situ, synchronous MS/XANES reveals the Pd catalyzed selective aerobic oxidation of crotyl alcohol is regulated by the balance between the oxidation state and reducibility. Dynamic XANES measurements provide a new, rapid method to determine redox kinetics of nanoparticles and identify important parameters to optimize catalyst design. © 2012 American Chemical Society.
Resumo:
The influence of silica mesostructure upon the Pd-catalyzed selective oxidation of allylic alcohols has been investigated for amorphous and surfactant-templated SBA-15, SBA-16, and KIT-6 silicas. Significant rate enhancements can be achieved via mesopore introduction, most notably through the use of interconnected porous silica frameworks, reflecting both improved mass transport and increased palladium dispersion; catalytic activity decreases in the order Pd/KIT-6 ≈ Pd/SBA-16 > Pd/SBA-15 > Pd/SiO2. Evidence is presented that highly dispersed palladium oxide nanoparticles, not zerovalent palladium, are the catalytically active species. © 2011 American Chemical Society.