4 resultados para PCI-CAMAC
em Aston University Research Archive
Resumo:
While the retrieval of existing designs to prevent unnecessary duplication of parts is a recognised strategy in the control of design costs the available techniques to achieve this, even in product data management systems, are limited in performance or require large resources. A novel system has been developed based on a new version of an existing coding system (CAMAC) that allows automatic coding of engineering drawings and their subsequent retrieval using a drawing of the desired component as the input. The ability to find designs using a detail drawing rather than textual descriptions is a significant achievement in itself. Previous testing of the system has demonstrated this capability but if a means could be found to find parts from a simple sketch then its practical application would be much more effective. This paper describes the development and testing of such a search capability using a database of over 3000 engineering components.
Resumo:
In designing new product the ability to retrieve drawings of existing components is important if costs are to be controlled by preventing unnecessary duplication if parts. Component coding and classification systems have been used successfully for these purposes but suffer from high operational costs and poor usability arising directly from the manual nature of the coding process itself. A new version of an existing coding system (CAMAC) has been developed to reduce costs by automatically coding engineering drawings. Usability is improved be supporting searches based on a drawing or sketch of the desired component. Test results from a database of several thousand drawings are presented.
Resumo:
The chromosomal ß-lactamase of Pseudomonas aeruginosa SAlconst (a derepressed laboratory strain) was isolated and purified. Two peaks of activity were observed on gel permeation chromatography (one major peak mol. wt. 45 kD and one minor peak of 54 kD). Preparations from 12 clinical derepressed strains showed identical results. Chromosomal ß-lactamase production in both normal and derepressed P. aeruginosa strains was induced both by iron restricted growth conditions and by penicillin G. The majority of the enzyme (80-90%) was found in the periplasm and cytoplasm but a significant amount (2-20%) was associated with the outer membrane (OM). The growth conditions did not affect the distribution of the enzyme between subcellular fractions although higher activity was found in the cells grown under iron limitation and/ or in the presence of ß-lactams. The penicillanate sulphone inhibitor, tazobactam, displayed irreversible kinetics whilst cloxacillin, cefotaxime, ampicillin and penicillin G were all competitive inhibitors of the enzyme. Similar results were obtained for the Enterobacter cloacae P99 [ß-lactamase, but tazobactam displayed a non-classical kinetic pattern for the Staphylococcus aureus PC1 ß-lactamase. The residues involved in ß-lactam hydrolysis by the P aeruginosa SAlconst enzyme were detennined by affinity labelling with tazobactam. A tryptic digestion fragment of the inhibited enzyme contained the amino acids D, T, S, E, P, G, A, C, V, M, I, Y, F, H, K, R. This suggests the involvement of the conserved SVSK, DAE and KTG motifs found in all penicillin sensitive proteins. A model of the 3-D structure of the active site of the P aeruginosa SAlconst chromosomal ß-!actamase was constructed from the published amino acid sequence of P aeruginosa chromosomal ß-lactamase and the a-carbon coordinates of the S. aureus PCI ß-lactamase by homology modelling and energy minimisation. The crystal structure of tazobactam was determined and energy minimised. Computer graphics docking identified Ser 72 as a possible residue involved in a secondary attack on the C5 position of tazobactam after initial ß-lactam hydrolysis by serine 70. The enhanced activity of tazobactam over sulbactam might be explained by the triazole substituent which might participate in favourable hydrogen bonding between N3 and active site residues.
Resumo:
Introduction - Monocytes, with 3 different subsets, are implicated in the initiation and progression of the atherosclerotic plaque contributing to plaque instability and rupture. Mon1 are the “classical” monocytes with inflammatory action, whilst Mon3 are considered reparative with fibroblast deposition ability. The function of the newly described Mon2 subset is yet to be fully described. In PCI era, fewer patients have globally reduced left ventricular ejection fraction post infarction, hence the importance of studying regional wall motion abnormalities and deformation at segmental levels using longitudinal strain. Little is known of the role for the 3 monocyte subpopulations in determining global strain in ST elevation myocardial infarction patients (STEMI). Conclusion In patients with normal or mildly impaired EF post infarction, higher counts of Mon1 and Mon2 are correlated with GLS within 7 days and at 6 months of remodelling post infarction. Adverse clinical outcomes in patients with reduced convalescent GLS were predicted with Mon1 and Mon2 suggestive of an inflammatory role for the newly identified Mon2 subpopulation. These results imply an important role for monocytes in myocardial healing when assessed by subclinical ventricular function indices. Methodology - STEMI patients (n = 101, mean age 64 ± 13 years; 69% male) treated with percutaneous revascularisation were recruited within 24 h post-infarction. Peripheral blood monocyte subpopulations were enumerated and characterised using flow cytometry after staining for CD14, CD16 and CCR2. Phenotypically, monocyte subpopulations are defined as: CD14++CD16-CCR2+ (Mon1), CD14++CD16+CCR2+ (Mon2) and CD14+CD16++CCR2- (Mon3). Phagocytic activity of monocytes was measured using flow cytometry and Ecoli commercial kit. Transthoracic 2D echocardiography was performed within 7 days and at 6 months post infarct to assess global longitudinal strain (GLS) via speckle tracking. MACE was defined as recurrent acute coronary syndrome and death. Results - STEMI patients with EF ≥50% by Simpson’s biplane (n = 52) had GLS assessed. Using multivariate regression analysis higher counts of Mon1 and Mon 2 and phagocytic activity of Mon2 were significantly associated with GLS (after adjusting for age, time to hospital presentation, and peak troponin levels) (Table 1). At 6 months, the convalescent GLS remained associated with higher counts of Mon1, Mon 2. At one year follow up, using multivariate Cox regression analysis, Mon1 and Mon2 counts were an independent predictor of MACE in patients with a reduced GLS (n = 21)