2 resultados para PCD

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

-In the Liliaceous species Alstroemeria, petal senescence is characterized by wilting and inrolling, terminating in abscission 8-10 d after flower opening. -In many species, flower development and senescence involves programmed cell death (PCD). PCD in Alstroemeria petals was investigated by light (LM) and transmission electron microscopy (TEM) (to study nuclear degradation and cellular integrity), DNA laddering and the expression programme of the DAD-1 gene. -TEM showed nuclear and cellular degradation commenced before the flowers were fully open and that epidermal cells remained intact whilst the mesophyll cells degenerated completely. DNA laddering increased throughout petal development. Expression of the ALSDAD-1 partial cDNA was shown to be downregulated after flower opening. -We conclude that some PCD processes are started extremely early and proceed throughout flower opening and senescence, whereas others occur more rapidly between stages 4-6 (i.e. postanthesis). The spatial distribution of PCD across the petals is discussed. Several molecular and physiological markers of PCD are present during Alstroemeria petal senescence. © New Phytologist (2003).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the impact of methane concentration in hydrogen plasma on the growth of large-grained polycrystalline diamond (PCD) films and its hydrogen impurity incorporation. The diamond samples were produced using high CH4 concentration in H2 plasma and high power up to 4350 W and high pressure (either 105 or 110 Torr) in a microwave plasma chemical vapor deposition (MPCVD) system. The thickness of the free-standing diamond films varies from 165 µm to 430 µm. Scanning electron microscopy (SEM), micro-Raman spectroscopy and Fourier-transform infrared (FTIR) spectroscopy were used to characterize the morphology, crystalline and optical quality of the diamond samples, and bonded hydrogen impurity in the diamond films, respectively. Under the conditions employed here, when methane concentration in the gas phase increases from 3.75% to 7.5%, the growth rate of the PCD films rises from around 3.0 µm/h up to 8.5 µm/h, and the optical active bonded hydrogen impurity content also increases more than one times, especially the two CVD diamond specific H related infrared absorption peaks at 2818 and 2828 cm−1 rise strongly; while the crystalline and optical quality of the MCD films decreases significantly, namely structural defects and non-diamond carbon phase content also increases a lot with increasing of methane concentration. Based on the results, the relationship between methane concentration and diamond growth rate and hydrogen impurity incorporation including the form of bonded infrared active hydrogen impurity in CVD diamonds was analyzed and discussed. The effect of substrate temperature on diamond growth was also briefly discussed. The experimental findings indicate that bonded hydrogen impurity in CVD diamond films mainly comes from methane rather than hydrogen in the gas source, and thus can provide experimental evidence for the theoretical study of the standard methyl species dominated growth mechanism of CVD diamonds grown with methane/hydrogen mixtures.