9 resultados para PCB 153
em Aston University Research Archive
Resumo:
This paper presents two hybrid genetic algorithms (HGAs) to optimize the component placement operation for the collect-and-place machines in printed circuit board (PCB) assembly. The component placement problem is to optimize (i) the assignment of components to a movable revolver head or assembly tour, (ii) the sequence of component placements on a stationary PCB in each tour, and (iii) the arrangement of component types to stationary feeders simultaneously. The objective of the problem is to minimize the total traveling time spent by the revolver head for assembling all components on the PCB. The major difference between the HGAs is that the initial solutions are generated randomly in HGA1. The Clarke and Wright saving method, the nearest neighbor heuristic, and the neighborhood frequency heuristic are incorporated into HGA2 for the initialization procedure. A computational study is carried out to compare the algorithms with different population sizes. It is proved that the performance of HGA2 is superior to HGA1 in terms of the total assembly time.
Resumo:
It is indisputable that printed circuit boards (PCBs) play a vital role in our daily lives. With the ever-increasing applications of PCBs, one of the crucial ways to increase a PCB manufacturer’s competitiveness in terms of operation efficiency is to minimize the production time so that the products can be introduced to the market sooner. Optimal Production Planning for PCB Assembly is the first book to focus on the optimization of the PCB assembly lines’ efficiency. This is done by: • integrating the component sequencing and the feeder arrangement problems together for both the pick-and-place machine and the chip shooter machine; • constructing mathematical models and developing an efficient and effective heuristic solution approach for the integrated problems for both types of placement machines, the line assignment problem, and the component allocation problem; and • developing a prototype of the PCB assembly planning system. The techniques proposed in Optimal Production Planning for PCB Assembly will enable process planners in the electronics manufacturing industry to improve the assembly line’s efficiency in their companies. Graduate students in operations research can familiarise themselves with the techniques and the applications of mathematical modeling after reading this advanced introduction to optimal production planning for PCB assembly.
Resumo:
Purpose – The purpose of this paper is to investigate the optimization for a placement machine in printed circuit board (PCB) assembly when family setup strategy is adopted. Design/methodology/approach – A complete mathematical model is developed for the integrated problem to optimize feeder arrangement and component placement sequences so as to minimize the makespan for a set of PCB batches. Owing to the complexity of the problem, a specific genetic algorithm (GA) is proposed. Findings – The established model is able to find the minimal makespan for a set of PCB batches through determining the feeder arrangement and placement sequences. However, exact solutions to the problem are not practical due to the complexity. Experimental tests show that the proposed GA can solve the problem both effectively and efficiently. Research limitations/implications – When a placement machine is set up for production of a set of PCB batches, the feeder arrangement of the machine together with the component placement sequencing for each PCB type should be solved simultaneously so as to minimize the overall makespan. Practical implications – The paper investigates the optimization for PCB assembly with family setup strategy, which is adopted by many PCB manufacturers for reducing both setup costs and human errors. Originality/value – The paper investigates the feeder arrangement and placement sequencing problems when family setup strategy is adopted, which has not been studied in the literature.
Resumo:
This paper formulates several mathematical models for determining the optimal sequence of component placements and assignment of component types to feeders simultaneously or the integrated scheduling problem for a type of surface mount technology placement machines, called the sequential pick-andplace (PAP) machine. A PAP machine has multiple stationary feeders storing components, a stationary working table holding a printed circuit board (PCB), and a movable placement head to pick up components from feeders and place them to a board. The objective of integrated problem is to minimize the total distance traveled by the placement head. Two integer nonlinear programming models are formulated first. Then, each of them is equivalently converted into an integer linear type. The models for the integrated problem are verified by two commercial packages. In addition, a hybrid genetic algorithm previously developed by the authors is adopted to solve the models. The algorithm not only generates the optimal solutions quickly for small-sized problems, but also outperforms the genetic algorithms developed by other researchers in terms of total traveling distance.
Resumo:
Purpose – This paper sets out to study a production-planning problem for printed circuit board (PCB) assembly. A PCB assembly company may have a number of assembly lines for production of several product types in large volume. Design/methodology/approach – Pure integer linear programming models are formulated for assigning the product types to assembly lines, which is the line assignment problem, with the objective of minimizing the total production cost. In this approach, unrealistic assignment, which was suffered by previous researchers, is avoided by incorporating several constraints into the model. In this paper, a genetic algorithm is developed to solve the line assignment problem. Findings – The procedure of the genetic algorithm to the problem and a numerical example for illustrating the models are provided. It is also proved that the algorithm is effective and efficient in dealing with the problem. Originality/value – This paper studies the line assignment problem arising in a PCB manufacturing company in which the production volume is high.
Resumo:
The collect-and-place machine is one of the most widely used placement machines for assembling electronic components on the printed circuit boards (PCBs). Nevertheless, the number of researches concerning the optimisation of the machine performance is very few. This motivates us to study the component scheduling problem for this type of machine with the objective of minimising the total assembly time. The component scheduling problem is an integration of the component sequencing problem, that is, the sequencing of component placements; and the feeder arrangement problem, that is, the assignment of component types to feeders. To solve the component scheduling problem efficiently, a hybrid genetic algorithm is developed in this paper. A numerical example is used to compare the performance of the algorithm with different component grouping approaches and different population sizes.
Resumo:
In printed circuit board (PCB) assembly, the efficiency of the component placement process is dependent on two interrelated issues: the sequence of component placement, that is, the component sequencing problem, and the assignment of component types to feeders of the placement machine, that is, the feeder arrangement problem. In cases where some components with the same type are assigned to more than one feeder, the component retrieval problem should also be considered. Due to their inseparable relationship, a hybrid genetic algorithm is adopted to solve these three problems simultaneously for a type of PCB placement machines called the sequential pick-and-place (PAP) machine in this paper. The objective is to minimise the total distance travelled by the placement head for assembling all components on a PCB. Besides, the algorithm is compared with the methods proposed by other researchers in order to examine its effectiveness and efficiency.
Resumo:
A chip shooter machine for electronic components assembly has a movable feeder carrier holding components, a movable X-Y table carrying a printed circuit board (PCB), and a rotary turret having multiple assembly heads. This paper presents a hybrid genetic algorithm to optimize the sequence of component placements for a chip shooter machine. The objective of the problem is to minimize the total traveling distance of the X-Y table or the board. The genetic algorithm developed in the paper hybridizes the nearest neighbor heuristic, and an iterated swap procedure, which is a new improved heuristic. We have compared the performance of the hybrid genetic algorithm with that of the approach proposed by other researchers and have demonstrated our algorithm is superior in terms of the distance traveled by the X-Y table or the board.