20 resultados para P53 Protein Accumulation

em Aston University Research Archive


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Treatment of murine myoblasts, myotubes and tumour cells with a tumour-produced lipid mobilizing factor (LMF), caused a concentration-dependent stimulation of protein synthesis, within a 24 h period. There was no effect on cell number or [3H] thymidine incorporation, but a similar concentration-dependent stimulation of 2-deoxyglucose uptake. LMF produced an increase in intracellular cyclic AMP levels, which was linearly (r2 = 0.973) related to the increase in protein synthesis. The effect of LMF was attenuated by the adenylate cyclase inhibitor MDL12330A, and was additive with the stimulation produced by forskolin. Both propranolol (10 μM) and the specific β3-adrenergic receptor antagonist SR 59230A (10-5M), significantly reduced the stimulation of protein synthesis induced by LMF. Protein synthesis was also increased by 69% (P = 0.006) in soleus muscles of mice administered LMF, while there was a 26% decrease in protein degradation (P = 0.03). While LMF had no effect on the lysosomal enzymes, cathepsins B and L, there was a decrease in proteasome activity, as determined both by the 'chymotrypsin-like' enzyme activity, as well as expression of proteasome α-type subunits, determined by Western blotting. These results show that in addition to its lipid-mobilizing activity LMF also increases protein accumulation in skeletal muscle both by an increase in protein synthesis and a decrease in protein catabolism. © 2001 Cancer Research Campaign.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background - Plants have proved to be an important source of anti-cancer drugs. Here we have investigated the cytotoxic action of an aqueous extract of Fagonia cretica, used widely as a herbal tea-based treatment for breast cancer. Methodology/Principal Findings - Using flow cytometric analysis of cells labeled with cyclin A, annexin V and propidium iodide, we describe a time and dose-dependent arrest of the cell cycle in G0/G1 phase of the cell cycle and apoptosis following extract treatment in MCF-7 (WT-p53) and MDA-MB-231 (mutant-p53) human breast cancer cell lines with a markedly reduced effect on primary human mammary epithelial cells. Analysis of p53 protein expression and of its downstream transcription targets, p21 and BAX, revealed a p53 associated growth arrest within 5 hours of extract treatment and apoptosis within 24 hours. DNA double strand breaks measured as ?-H2AX were detected early in both MCF-7 and MDA-MB-231 cells. However, loss of cell viability was only partly due to a p53-driven response; as MDA-MB-231 and p53-knockdown MCF-7 cells both underwent cell cycle arrest and death following extract treatment. p53-independent growth arrest and cytotoxicity following DNA damage has been previously ascribed to FOXO3a expression. Here, in MCF-7 and MDA-MB-231 cells, FOXO3a expression was increased significantly within 3 hours of extract treatment and FOXO3 siRNA reduced the extract-induced loss of cell viability in both cell lines. Conclusions/Significance - Our results demonstrate for the first time that an aqueous extract of Fagonia cretica can induce cell cycle arrest and apoptosis via p53-dependent and independent mechanisms, with activation of the DNA damage response. We also show that FOXO3a is required for activity in the absence of p53. Our findings indicate that Fagonia cretica aqueous extract contains potential anti-cancer agents acting either singly or in combination against breast cancer cell proliferation via DNA damage-induced FOXO3a and p53 expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1 Adrenomedullin (AM) and calcitonin gene-related peptide (CGRP) have structural similarities, interact with each others receptors (calcitonin receptor-like receptor (CLR)/receptor-activity-modifying proteins (RAMPs)) and show overlapping biological activities. AM and CGRP receptors are chiefly coupled to cAMP production. In this study, a method of primary dissociated cell culture was used to investigate the presence of AM and CGRP receptors and their effects on cAMP production in embryonic spinal cord cells. 2 Both neuronal and non-neuronal CLR immunopositive cells were present in our model. 3 High affinity, specific [ 125I]-AM binding sites (K(d) 79±9 pM and B(max) 571±34 fmol mg -1 protein) were more abundant than specific [ 125I]-CGRP binding sites (K(d) 12±0.7 pM and B(max) 32±2 fmol mg -1 protein) in embryonic spinal cord cells. 4 Specific [ 125I]-AM binding was competed by related molecules with a ligand selectivity profile of rAM>hAM(22-52)>rCGRPα>CGRP(8-37) ≫[r-(r*,s*)]-N-[2-[[5-amino-1-[[4-(4-pyridinyl)-1-piperazinyl] carbonyl]pentyl]amino]-1-[(3,5-dibromo-4-hydroxyphenyl)methyl]-2-oxoethyl]-4-(1, 4-dihydro-2-oxo-3(2H)-quinazolinyl)-,1-piperidinecarboxamide (BIBN4096BS). 5 Specific [ 125I]-CGRP binding was competed by rCGRPα>rAM≥ CGRP(8-37)≥BIBN4096BS>hAM(22-52). 6 Cellular levels of cAMP were increased by AM (pEC"5"0 10.2±0.2) and less potently by rCGRPα (pEC"5"0 8.9±0.4). rCGRPα-induced cAMP accumulation was effectively inhibited by CGRP(8-37) (pA"2 7.63±0.44) and hAM(22-52) (pA"2 6.18±0.21) while AM-stimulation of cAMP levels was inhibited by CGRP(8-37) (pA"2 7.41±0.15) and AM(22-52) (pA"2 7.26±0.18). BIBN4096BS only antagonized the effects of CGRP (pA"2 8.40±0.30) on cAMP accumulation. 7 These pharmacological profiles suggest that effects of CGRP are mediated by the CGRP"1 (CLR/RAMP1) receptor in our model while those of AM are related to the activation of the AM"1 (CLR/RAMP2) receptor subtype. © 2006 Nature Publishing Group All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calcitonin (CT) receptors dimerize with receptor activity-modifying proteins (RAMPs) to create high-affinity amylin (AMY) receptors, but there is no reliable means of pharmacologically distinguishing these receptors. We used agonists and antagonists to define their pharmacology, expressing the CT (a) receptor alone or with RAMPs in COS-7 cells and measuring cAMP accumulation. Intermedin short, otherwise known as adrenomedullin 2, mirrored the action of αCGRP, being a weak agonist at CT(a), AMY 2(a), and AMY3(a) receptors but considerably more potent at AMY1(a) receptors. Likewise, the linear calcitonin gene-related peptide (CGRP) analogs (Cys(ACM)2,7)hαCGRP and (Cys(Et) 2,7)haCGRP were only effective at AMY1(a) receptors, but they were partial agonists. As previously observed in COS-7 cells, there was little induction of the AMY2(a) receptor phenotype; thus, AMY 2(a) was not examined further in this study. The antagonist peptide salmon calcitonin8-32 (sCT8-32) did not discriminate strongly between CT and AMY receptors; however, AC187 was a more effective antagonist of AMY responses at AMY receptors, and AC413 additionally showed modest selectivity for AMY1(a) over AMY3(a) receptors. CGRP8-37 also demonstrated receptor-dependent effects. CGRP 8-37 more effectively antagonized AMY at AMY1(a) than AMY3(a) receptors, although it was only a weak antagonist of both, but it did not inhibit responses at the CT(a) receptor. Low CGRP 8-37 affinity and agonism by linear CGRP analogs at AMY 1(a) are the classic signature of a CGRP2 receptor. Our data indicate that careful use of combinations of agonists and antagonists may allow pharmacological discrimination of CT(a), AMY1(a), and AMY3(a) receptors, providing a means to delineate the physiological significance of these receptors. Copyright © 2005 The American Society for Pharmacology and Experimental Therapeutics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pathogenesis of several neurodegenerative diseases, including Alzheimer's disease, has been linked to a condition of oxidative and nitrosative stress, arising from the imbalance between increased reactive oxygen species (ROS) and reactive nitrogen species (RNS) production and antioxidant defences or efficiency of repair or removal systems. The effects of free radicals are expressed by the accumulation of oxidative damage to biomolecules: nucleic acids, lipids and proteins. In this review we focused our attention on the large body of evidence of oxidative damage to protein in Alzheimer's disease brain and peripheral cells as well as in their role in signalling pathways. The progress in the understanding of the molecular alterations underlying Alzheimer's disease will be useful in developing successful preventive and therapeutic strategies, since available drugs can only temporarily stabilize the disease, but are not able to block the neurodegenerative process. © 2007 Springer-Verlag.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although the actin cytoskeleton and the translation machinery are considered to be separate cellular complexes, growing evidence supports overlapping regulation of the two systems. Because of its interaction with actin, the eukaryotic translation elongation factor 1A (eEF1A) is proposed to be a regulator or link between these processes. Using a genetic approach with the yeast Saccharomyces cerevisiae, specific regions of eEF1A responsible for actin interactions and bundling were identified. Five new mutations were identified along one face of eEF1A. Dramatic changes in cell growth, cell morphology, and actin cable and patch formation as well as a unique effect on total translation in strains expressing the F308L or S405P eEF1A mutant form were observed. The translation effects do not correlate with reduced translation elongation but instead include an initiation defect. Biochemical analysis of the eEF1A mutant forms demonstrated reduced actin-bundling activity in vitro. Reduced total translation and/or the accumulation of 80S ribosomes in strains with either a mutation or a null allele of genes encoding actin itself or actin-regulating proteins Tpm1p, Mdm20p, and Bnirp/Bni1p was observed. Our data demonstrate that eEF1A, other actin binding proteins, and actin mutants affect translation initiation through the actin cytoskeleton.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The optimisation and scale-up of process conditions leading to high yields of recombinant proteins is an enduring bottleneck in the post-genomic sciences. Typical experiments rely on varying selected parameters through repeated rounds of trial-and-error optimisation. To rationalise this, several groups have recently adopted the 'design of experiments' (DoE) approach frequently used in industry. Studies have focused on parameters such as medium composition, nutrient feed rates and induction of expression in shake flasks or bioreactors, as well as oxygen transfer rates in micro-well plates. In this study we wanted to generate a predictive model that described small-scale screens and to test its scalability to bioreactors. Results Here we demonstrate how the use of a DoE approach in a multi-well mini-bioreactor permitted the rapid establishment of high yielding production phase conditions that could be transferred to a 7 L bioreactor. Using green fluorescent protein secreted from Pichia pastoris, we derived a predictive model of protein yield as a function of the three most commonly-varied process parameters: temperature, pH and the percentage of dissolved oxygen in the culture medium. Importantly, when yield was normalised to culture volume and density, the model was scalable from mL to L working volumes. By increasing pre-induction biomass accumulation, model-predicted yields were further improved. Yield improvement was most significant, however, on varying the fed-batch induction regime to minimise methanol accumulation so that the productivity of the culture increased throughout the whole induction period. These findings suggest the importance of matching the rate of protein production with the host metabolism. Conclusion We demonstrate how a rational, stepwise approach to recombinant protein production screens can reduce process development time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Loss of skeletal muscle in cancer cachexia has a negative effect on both morbidity and mortality. The role of nuclear factor-κB (NF-κB) in regulating muscle protein degradation and expression of the ubiquitin-proteasome proteolytic pathway in response to a tumour cachectic factor, proteolysis-inducing factor (PIF), has been studied by creating stable, transdominant-negative, muscle cell lines. Murine C2C12 myoblasts were transfected with plasmids with a CMV promoter that had mutations at the serine phosphorylation sites required for degradation of I-κBα, an NF-κB inhibitory protein, and allowed to differentiate into myotubes. Proteolysis-inducing factor induced degradation of I-κBα, nuclear accumulation of NF-κB and an increase in luciferase reporter gene activity in myotubes containing wild-type, but not mutant, I-κBα, proteins. Proteolysis-inducing factor also induced total protein degradation and loss of the myofibrillar protein myosin in myotubes containing wild-type, but not mutant, plasmids at the same concentrations as those causing activation of NF-κB. Proteolysis-inducing factor also induced increased expression of the ubiquitin-proteasome pathway, as determined by 'chymotrypsin-like' enzyme activity, the predominant proteolytic activity of the β-subunits of the proteasome, protein expression of 20S α-subunits and the 19S subunits MSSI and p42, as well as the ubiquitin conjugating enzyme, E214k, in cells containing wild-type, but not mutant, I-κBα. The ability of mutant I-κBα to inhibit PIF-induced protein degradation, as well as expression of the ubiquitin-proteasome pathway, confirms that both of these responses depend on initiation of transcription by NF-κB. © 2005 Cancer Research UK.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The leucine metabolite β-hydroxy-β-methylbutyrate (HMB) prevents muscle protein degradation in cancer-induced weight loss through attenuation of the ubiquitin-proteasome proteolytic pathway. To investigate the mechanism of this effect, the action of HMB on protein breakdown and intracellular signaling leading to increased proteasome expression by the tumor factor proteolysis-inducing factor (PIF) has been studied in vitro using murine myotubes as a surrogate model of skeletal muscle. A comparison has been made of the effects of HMB and those of eicosapentaenoic acid (EPA), a known inhibitor of PIF signaling. At a concentration of 50 μmol/L, EPA and HMB completely attenuated PIF-induced protein degradation and induction of the ubiquitin-proteasome proteolytic pathway, as determined by the "chymotrypsin-like" enzyme activity, as well as protein expression of 20S proteasome α- and β-subunits and subunit p42 of the 19S regulator. The primary event in PIF-induced protein degradation is thought to be release of arachidonic acid from membrane phospholipids, and this process was attenuated by EPA, but not HMB, suggesting that HMB might act at another step in the PIF signaling pathway. EPA and HMB at a concentration of 50 μmol/L attenuated PIF-induced activation of protein kinase C and the subsequent degradation of inhibitor κBα and nuclear accumulation of nuclear factor κB. EPA and HMB also attenuated phosphorylation of p42/44 mitogen-activated protein kinase by PIF, thought to be important in PIF-induced proteasome expression. These results suggest that HMB attenuates PIF-induced activation and increased gene expression of the ubiquitin-proteasome proteolytic pathway, reducing protein degradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diabetic nephropathy affects 30-40% of diabetics leading to end-stage kidney failure through progressive scarring and fibrosis. Previous evidence suggests that tissue transglutaminase (tTg) and its protein cross-link product epsilon(gamma-glutamyl)lysine contribute to the expanding renal tubulointerstitial and glomerular basement membranes in this disease. Using an in vitro cell culture model of renal proximal tubular epithelial cells we determined the link between elevated glucose levels with changes in expression and activity of tTg and then, by using a highly specific site directed inhibitor of tTg (1,3-dimethyl-2[(oxopropyl)thio]imidazolium), determined the contribution of tTg to glucose-induced matrix accumulation. Exposure of cells to 36 mm glucose over 96 h caused an mRNA-dependent increase in tTg activity with a 25% increase in extracellular matrix (ECM)-associated tTg and a 150% increase in ECM epsilon(gamma-glutamyl)lysine cross-linking. This was paralleled by an elevation in total deposited ECM resulting from higher levels of deposited collagen and fibronectin. These were associated with raised mRNA for collagens III, IV, and fibronectin. The specific site-directed inhibitor of tTg normalized both tTg activity and ECM-associated epsilon(gamma-glutamyl)lysine. Levels of ECM per cell returned to near control levels with non-transcriptional reductions in deposited collagen and fibronectin. No changes in transforming growth factor beta1 (expression or biological activity) occurred that could account for our observations, whereas incubation of tTg with collagen III indicated that cross-linking could directly increase the rate of collagen fibril/gel formation. We conclude that Tg inhibition reduces glucose-induced deposition of ECM proteins independently of changes in ECM and transforming growth factor beta1 synthesis thus opening up its possible application in the treatment other fibrotic and scarring diseases where tTg has been implicated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Elevated levels of the calcium-binding protein S100A4 promote metastasis and in carcinoma cells are associated with reduced survival of cancer patients. S100A4 interacts with target proteins that affect a number of activities associated with metastatic cells. However, it is not known how many of these interactions are required for S100A4-promoted metastasis, thus hampering the design of specific inhibitors of S100A4-induced metastasis. Intracellular S100A4 exists as a homodimer through previously identified, well conserved, predominantly hydrophobic key contacts between the subunits. Here it is shown that mutating just one key residue, phenylalanine 72, to alanine is sufficient to reduce the metastasis-promoting activity of S100A4 to 50% that of the wild type protein, and just 2 or 3 specific mutations reduces the metastasis-promoting activity of S100A4 to less than 20% that of the wild type protein. These mutations inhibit the self-association of S100A4 in vivo and reduce markedly the affinity of S100A4 for at least two of its protein targets, a recombinant fragment of non-muscle myosin heavy chain isoform A, and p53. Inhibition of the self-association of S100 proteins might be a novel means of inhibiting their metastasis-promoting activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Recombinant protein production is universally employed as a solution to obtain the milligram to gram quantities of a given protein required for applications as diverse as structural genomics and biopharmaceutical manufacture. Yeast is a well-established recombinant host cell for these purposes. In this study we wanted to investigate whether our respiratory Saccharomyces cerevisiae strain, TM6*, could be used to enhance the productivity of recombinant proteins over that obtained from corresponding wild type, respiro-fermentative strains when cultured under the same laboratory conditions. RESULTS: Here we demonstrate at least a doubling in productivity over wild-type strains for three recombinant membrane proteins and one recombinant soluble protein produced in TM6* cells. In all cases, this was attributed to the improved biomass properties of the strain. The yield profile across the growth curve was also more stable than in a wild-type strain, and was not further improved by lowering culture temperatures. This has the added benefit that improved yields can be attained rapidly at the yeast's optimal growth conditions. Importantly, improved productivity could not be reproduced in wild-type strains by culturing them under glucose fed-batch conditions: despite having achieved very similar biomass yields to those achieved by TM6* cultures, the total volumetric yields were not concomitantly increased. Furthermore, the productivity of TM6* was unaffected by growing cultures in the presence of ethanol. These findings support the unique properties of TM6* as a microbial cell factory. CONCLUSIONS: The accumulation of biomass in yeast cell factories is not necessarily correlated with a proportional increase in the functional yield of the recombinant protein being produced. The respiratory S. cerevisiae strain reported here is therefore a useful addition to the matrix of production hosts currently available as its improved biomass properties do lead to increased volumetric yields without the need to resort to complex control or cultivation schemes. This is anticipated to be of particular value in the production of challenging targets such as membrane proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atrophy of skeletal muscle is due to a depression in protein synthesis and an increase in degradation. Studies in vitro have suggested that activation of the dsRNA-dependent protein kinase (PKR) may be responsible for these changes in protein synthesis and degradation. In order to evaluate whether this is also applicable to cancer cachexia the action of a PKR inhibitor on the development of cachexia has been studied in mice bearing the MAC16 tumour. Treatment of animals with the PKR inhibitor (5 mg kg-1) significantly reduced levels of phospho-PKR in muscle down to that found in non-tumour-bearing mice, and effectively attenuated the depression of body weight, with increased muscle mass, and also inhibited tumour growth. There was an increase in protein synthesis in skeletal muscle, which paralleled a decrease in eukaryotic initiation factor 2α phosphorylation. Protein degradation rates in skeletal muscle were also significantly decreased, as was proteasome activity levels and expression. Myosin levels were increased up to values found in non-tumour-bearing animals. Proteasome expression correlated with a decreased nuclear accumulation of nuclear factor-κB (NF-κB). The PKR inhibitor also significantly inhibited tumour growth, although this appeared to be a separate event from the effect on muscle wasting. These results suggest that inhibition of the autophosphorylation of PKR may represent an appropriate target for the attenuation of muscle atrophy in cancer cachexia. © 2007 Cancer Research UK.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Angiotensin I and II have been shown to directly induce protein degradation in skeletal muscle through an increased activity and expression of the ubiquitin-proteasome proteolytic pathway. This investigation determines the role of the nuclear transcription factor nuclear factor-κB (NF-κB) in this process. Using murine myotubes as a surrogate model system both angiotensin I and II were found to induce activation of protein kinase C (PKC), with a parabolic dose-response curve similar to the induction of total protein degradation. Activation of PKC was required for the induction of proteasome expression, since calphostin C, a highly specific inhibitor of PKC, attenuated both the increase in total protein degradation and in proteasome expression and functional activity increased by angiotensin II. PKC is known to activate I-κB kinase (IKK), which is responsible for the phosphorylation and subsequent degradation of I-κB. Both angiotensin I and II induced an early decrease in cytoplasmic I-κB levels followed by nuclear accumulation of NF-κB. Using an NF-κB luciferase construct this was shown to increase transcriptional activation of NF-κB regulated genes. Maximal luciferase expression was seen at the same concentrations of angiotensin I/II as those inducing protein degradation. Total protein degradation induced by both angiotensin I and II was attenuated by resveratrol, which prevented nuclear accumulation of NF-κB, confirming that activation of NF-κB was responsible for the increased protein degradation. These results suggest that induction of proteasome expression by angiotensin I/II involves a signalling pathway involving PKC and NF-κB. © 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although muscle atrophy is common to a number of disease states there is incomplete knowledge of the cellular mechanisms involved. In this study murine myotubes were treated with the phorbol ester 12-0-tetradecanoylphorbol-13-acetate (TPA) to evaluate the role of protein kinase C (PKC) as an upstream intermediate in protein degradation. TPA showed a parabolic dose-response curve for the induction of total protein degradation, with an optimal effect at a concentration of 25 nM, and an optimal incubation time of 3 h. Protein degradation was attenuated by co-incubation with the proteasome inhibitor lactacystin (5 μM), suggesting that it was mediated through the ubiquitin-proteasome proteolytic pathway. TPA induced an increased expression and activity of the ubiquitin-proteasome pathway, as evidenced by an increased functional activity, and increased expression of the 20S proteasome α-subunits, the 19S subunits MSS1 and p42, as well as the ubiquitin conjugating enzyme E214k, also with a maximal effect at a concentration of 25 nM and with a 3 h incubation time. There was also a reciprocal decrease in the cellular content of the myofibrillar protein myosin. TPA induced activation of PKC maximally at a concentration of 25 nM and this effect was attenuated by the PKC inhibitor calphostin C (300 nM), as was also total protein degradation. These results suggest that stimulation of PKC in muscle cells initiates protein degradation through the ubiquitin-proteasome pathway. TPA also induced degradation of the inhibitory protein, I-κBα, and increased nuclear accumulation of nuclear factor-κB (NF-κB) at the same time and concentrations as those inducing proteasome expression. In addition inhibition of NF-κB activation by resveratrol (30 μM) attenuated protein degradation induced by TPA. These results suggest that the induction of proteasome expression by TPA may involve the transcription factor NF-κB. © 2005 Elsevier Inc. All rights reserved.