3 resultados para P123

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

(Figure Presented) Organized macroporous-mesoporous alumina can be obtained via a dual-templating approach. Monodispersed polystyrene beads promote macropore formation, while a P123 surfactant templating agent drives the formation of ordered hexagonal mesopores throughout the alumina framework. These well-defined pore networks coexist over a wide range of temperatures and macropore sizes. © 2009 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A low energy route for the removal of Pluronic P123 surfactant template during the synthesis of SBA-15 mesoporous silicas is explored. The conventional reflux of the hybrid inorganic-organic intermediate formed during co-condensation routes to Pr-SOH-SBA-15 is slow, utilises large solvent volumes, and requires 24 h to remove ∼90% of the organic template. In contrast, room temperature ultrasonication in a small methanol volume achieves the same degree of template extraction in only 5 min, with a 99.9% energy saving and 90% solvent reduction, without compromising the textural, acidic or catalytic properties of the resultant Pr-SOH-SBA-15. © 2014 The Royal Society of Chemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potential use of the solvothermal extraction (SE) as a preliminary step to calcination for detemplating SBA-15 mesophases is investigated; aiming to reduce the amount of organics to be burnt and thereby the corresponding structural shrinkage. A systematic study was carried out by soxhlet extraction on mesophases hydrothermally aged between 90 and 130 C. The mesophases containing variable amounts of template were then treated by calcination or pyrolysis/calcination. TGA was applied to quantify the template amount after the various treatments. The as obtained materials were characterized by SAXS and Ar ad/desorption for structural and textural information while 1H NMR gave information about the integrity of the as-recycled template. The study shows that solvothermal conditions remove considerably the template, typically from 50 to 10-20 wt.%, mainly extracted from the primary mesopores. Possible reuse of the extracted template is questionable as it is poor in polyethyleneoxide compared to the synthesis block-copolymer, Pluronic P123. For all thermal protocols applied (direct calcination, calcination after solvent-extraction or pyrolysis/calcination after solvent extraction), the thermal shrinkage decreases with the aging temperature; that is consistent with the condensation degree of the silica. For each mesophase, it was found that the thermal shrinkage becomes less pronounced when the material is fully templated; thus the template can serve as structural support or can control the mass transfer of O2 and thereby the oxidation rate of the template burning. © 2013 Elsevier Inc. All rights reserved.