7 resultados para P-Systems Mapping
em Aston University Research Archive
Resumo:
The design and implementation of data bases involve, firstly, the formulation of a conceptual data model by systematic analysis of the structure and information requirements of the organisation for which the system is being designed; secondly, the logical mapping of this conceptual model onto the data structure of the target data base management system (DBMS); and thirdly, the physical mapping of this structured model into storage structures of the target DBMS. The accuracy of both the logical and physical mapping determine the performance of the resulting systems. This thesis describes research which develops software tools to facilitate the implementation of data bases. A conceptual model describing the information structure of a hospital is derived using the Entity-Relationship (E-R) approach and this model forms the basis for mapping onto the logical model. Rules are derived for automatically mapping the conceptual model onto relational and CODASYL types of data structures. Further algorithms are developed for partly automating the implementation of these models onto INGRES, MIMER and VAX-11 DBMS.
Resumo:
In the third and final talk on dissipative structures in fiber applications, we discuss mathematical techniques that can be used to characterize modern laser systems that consist of several discrete elements. In particular, we use a nonlinear mapping technique to evaluate high power laser systems where significant changes in the pulse evolution per cavity round trip is observed. We demonstrate that dissipative soliton solutions might be effectively described using this Poincaré mapping approach.
Resumo:
Cognitive systems research involves the synthesis of ideas from natural and artificial systems in the analysis, understanding, and design of all intelligent systems. This chapter discusses the cognitive systems associated with the hippocampus (HC) of the human brain and their possible role in behaviour and neurodegenerative disease. The hippocampus (HC) is concerned with the analysis of highly abstract data derived from all sensory systems but its specific role remains controversial. Hence, there have been three major theories concerning its function, viz., the memory theory, the spatial theory, and the behavioral inhibition theory. The memory theory has its origin in the surgical destruction of the HC, which results in severe anterograde and partial retrograde amnesia. The spatial theory has its origin in the observation that neurons in the HC of animals show activity related to their location within the environment. By contrast, the behavioral inhibition theory suggests that the HC acts as a ‘comparator’, i.e., it compares current sensory events with expected or predicted events. If a set of expectations continues to be verified then no alteration of behavior occurs. If, however, a ‘mismatch’ is detected then the HC intervenes by initiating appropriate action by active inhibition of current motor programs and initiation of new data gathering. Understanding the cognitive systems of the hippocampus in humans may aid in the design of intelligent systems involved in spatial mapping, memory, and decision making. In addition, this information may lead to a greater understanding of the course of clinical dementia in the various neurodegenerative diseases in which there is significant damage to the HC.
Resumo:
In the third and final talk on dissipative structures in fiber applications, we discuss mathematical techniques that can be used to characterize modern laser systems that consist of several discrete elements. In particular, we use a nonlinear mapping technique to evaluate high power laser systems where significant changes in the pulse evolution per cavity round trip is observed. We demonstrate that dissipative soliton solutions might be effectively described using this Poincaré mapping approach.