9 resultados para Oxygen vacancy formation

em Aston University Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The susceptibility of tetrahydropterins to oxidation was investigated in vitro and related to in vivo metabolism. At physiological pH, tetrahydrobiopterin (BH4) was oxidized, with considerable loss of the biopterin skeleton, by molecular oxygen. The hydroxyl radical (.OH) was found to increase this oxidation and degradation, whilst physiological concentrations of glutathione (GSH) retarded both the dioxygen and .OH mediated oxidation. Nitrite, at acid pH, oxidized BH4 to biopterin and tetrahydrofolates to products devoid of folate structure. Loss of dietary folates, from the stomach, due to nitrite mediated catabolism is suggested. The in vivo response of BH4 metabolism to oxidising conditions was examined in the rat brain and liver. Acute starvation depressed brain biopterins and transiently BH4 biosynthetic and salvage (dihydropteridine reductase, DHPR) pathways. Loss of biopterins, in starvation, is suggested to arise primarily from catabolism, due to oxygen radical formation and GSH depletion. L-cysteine administration to starving rats was found to elevate tissue biopterins, whilst depletion of GSH in feeding rats, by L-buthionine sulfoximine, decreased biopterins. An in vivo role for GSH to protect tetrahydropterins from oxidation is suggested. The in vivo effect of phenelzine dosing was investigated. Administration lowered brain biopterins, in the presence of dietary tyrosine. This loss is considered to arise from p-tyramine generation and subsequent DHPR inhibition. Observed elevations in plasma biopterins were in line with this mechanism. In conditions other than gross inhibition of DHPR or BH4 biosynthesis, plasma total biopterins were seen to be poor indicators of tissue BH4 metabolism. Evidence is presented indicating that the pterin formed in tissue samples by acid iodine oxidation originates from the tetrahydrofolate pool and 7,8-dihydropterin derived from BH4 oxidation. The observed reduction in this pterin by prior in vivo nitrous oxide exposure and elevation by starvation and phenelzine administration is discussed in this light. The biochemical importance of the changes in tetrahydropterin metabolism observed in this thesis are discussed with extrapolation to the situation in man, where appropriate. An additional role for BH4 as a tissue antioxidant and reductant is also considered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Treatment of murine myotubes with high glucose concentrations (10 and 25 mM) stimulated protein degradation through the ubiquitin–proteasome pathway, and also caused activation (autophosphorylation) of PKR (double-stranded-RNA-dependent protein kinase) and eIF2a (eukaryotic initiation factor 2a). Phosphorylation of PKR and eIF2a was also seen in the gastrocnemius muscle of diabetic ob/ob mice. High glucose levels also inhibited protein synthesis. The effect of glucose on protein synthesis and degradation was not seen in myotubes transfected with a catalytically inactive variant (PKR?6). High glucose also induced an increased activity of both caspase-3 and -8, which led to activation of PKR, since this was completely attenuated by the specific caspase inhibitors. Activation of PKR also led to activation of p38MAPK (mitogen activated protein kinase), leading to ROS (reactive oxygen species) formation, since this was attenuated by the specific p38MAPK inhibitor SB203580. ROS formation was important in protein degradation, since it was completely attenuated by the antioxidant butylated hydroxytoluene. These results suggest that high glucose induces muscle atrophy through the caspase-3/-8 induced activation of PKR, leading to phosphorylation of eIF2a and depression of protein synthesis, together with PKR-mediated ROS production, through p38MAPK and increased protein degradation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Papillon-Lefévre syndrome is a rare, inherited, autosomal-recessive disease, characterized by palmoplantar keratosis and severe prepubertal periodontitis, leading to premature loss of all teeth. Papillon-Lefévre syndrome is caused by a mutation in the cathepsin C gene, resulting in complete loss of activity and subsequent failure to activate immune response proteins. Periodontitis in Papillon-Lefévre syndrome is thought to arise from failure to eliminate periodontal pathogens as a result of cathepsin C deficiency, although mechanistic pathways remain to be elucidated. The aim of this study was to characterize comprehensively neutrophil function in Papillon-Lefévre syndrome. Peripheral blood neutrophils were isolated from 5 patients with Papillon-Lefévre syndrome, alongside matched healthy control subjects. For directional chemotactic accuracy, neutrophils were exposed to the chemoattractants MIP-1α and fMLP and tracked by real-time videomicroscopy. Reactive oxygen species generation was measured by chemiluminescence. Neutrophil extracellular trap formation was assayed fluorometrically, and proinflammatory cytokine release was measured following overnight culture of neutrophils with relevant stimuli. Neutrophil serine protease deficiencies resulted in a reduced ability of neutrophils to chemotax efficiently and an inability to generate neutrophil extracellular traps. Neutrophil extracellular trap-bound proteins were also absent in Papillon-Lefévre syndrome, and Papillon-Lefévre syndrome neutrophils released higher levels of proinflammatory cytokines in unstimulated and stimulated conditions, and plasma cytokines were elevated. Notably, neutrophil chemoattractants MIP-1α and CXCL8 were elevated in Papillon-Lefévre syndrome neutrophils, as was reactive oxygen species formation. We propose that relentless recruitment and accumulation of hyperactive/reactive neutrophils (cytokines, reactive oxygen species) with increased tissue transit times into periodontal tissues, alongside a reduced antimicrobial capacity, create a locally destructive chronic inflammatory cycle in Papillon-Lefévre syndrome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rheumatoid inflammation is characterised by the production of rheumatoid factor antibodies directed against denatured IgG. Oxygen free radicals have the potential to denature all manner of proteins and can be generated by activated phagocytic cells in the inflamed joint. By modifying routine ELISA and nephelometric procedures for measuring rheumatoid factor, (i.e. substituting free radical altered IgG for rabbit and heat aggregated IgG as antigens) we have observed that oxygen radicals, generated by (1) UV light and (2) PMA-activated neutrophils, give rise to monomeric and polymeric forms of IgG which have increased reactivity towards IgM and IgA polyclonal rheumatoid factor antibodies. We conclude that free radical alteration of IgG may be a stimulus to the formation of immune complexes with rheumatoid factor antibody, thereby promoting and amplifying tissue damage during rheumatoid inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The avascular nature of the human intervertebral disc (IVD) is thought to play a major role in disc pathophysiology by limiting nutrient supply to resident IVD cells. In the human IVD, the central IVD cells at maturity are normally chondrocytic in phenotype. However, abnormal cell phenotypes have been associated with degenerative disc diseases, including cell proliferation and cluster formation, cell death, stellate morphologies, and cell senescence. Therefore, we have examined the relative influence of possible blood-borne factors on the growth characteristics of IVD cells in vitro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) and the sphingolipid ceramide are each partly responsible for the intracellular signal transduction of a variety of physiological, pharmacological or environmental agents. Furthermore, the enhanced production of many of these agents, that utilise ROS and ceramide as signalling intermediates, is associated with the aetiologies of several vascular diseases (e.g. atherosclerosis) or disorders of inflammatory origin (e.g. rheumatoid arthritis; RA). Excessive monocyte recruitment and uncontrolled T cell activation are both strongly implicated in the chronic inflammatory responses that are associated with these pathologies. Therefore the aims of this thesis are (1) to further elucidate the cellular responses to modulations in intracellular ceramide/ROS levels in monocytes and T cells, in order to help resolve the mechanisms of progression of these diseases and (2) to examine both existing agents (methotrexate) and novel targets for possible therapeutic manipulation. Utilising synthetic, short chain ceramide to mimic the cellular responses to fluctuations in natural endogenous ceramide or, stimulation of CD95 to induce ceramide formation, it is described here that ceramide targets and manipulates two discrete sites responsible for ROS generation, preceding the cellular responses of growth arrest in U937 monocytes and apoptosis in Jurkat T-cells. In both cell types, transient elevations in mitochondrial ROS generation were observed. However, the prominent redox altering effects appear to be the ceramide-mediated reduction in cytosolic peroxide, the magnitude of which dictates in part the cellular response in U937 monocytes, Jurkat T-cells and primary human peripheral blood resting or PHA-activated T-cells in vitro. The application of synthetic ceramides to U937 monocytes for short (2 hours) or long (16 hours) treatment periods reduced the membrane expression of proteins associated with cell-cell interaction. Furthermore, ceramide treated U937 monocytes demonstrated reduced adhesion to 5 or 24 hour LPS activated human umbilical vein endothelial cells (HUVEC) but not resting HUVEC. Consequently it is hypothesised that the targeted treatment of monocytes from patients with cardiovascular diseases with short chain synthetic ceramide may reduce disease progression. Herein, the anti-inflammatory and immunosuppressant drug, methotrexate, is described to require ROS production for the induction of cytostasis or cytotoxicity in U937 monocytes and Jurkat T-cells respectively. Further, ROS are critical for methotrexate to abrogate monocyte interaction with activated HUVEC in vitro. The histological feature of RA of enhanced infiltration, survivability and hyporesponsiveness of T-cells within the diseased synovium has been suggested to arise from aberrant signalling. No difference in the concentrations of endogenous T-cell ceramide, the related lipid diacylglycerol (DAG) and cytosolic peroxide ex vivo was observed. TCR activation following PHA exposure in vitro for 72 hours did not induced maintained perturbations in DAG or ceramide in T-cells from RA patients or healthy individuals. However, T-cells from RA patients failed to upregulate cytosolic peroxide in response to PHA, unlike those from normals, despite expressing identical levels of the activation marker CD25. This inability to upregulate cytosolic peroxide may contribute to the T-cell pathology associated with RA by affecting the signalling capacity of redox sensitive biomolecules. These data highlight the importance of two distinctive cellular pools of ROS in mediating complex biological events associated with inflammatory disease and suggest that modulation of cellular ceramides represents a novel therapeutic strategy to minimise monocyte recruitment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is concerned with the role of diagenesis in forming ore deposits. Two sedimentary 'ore-types' have been examined; the Proterozoic copper-cobalt orebodies of the Konkola Basin on the Zambian Copperbelt, and the Permian Marl Slate of North East England. Facies analysis of the Konkola Basin shows the Ore-Shale to have formed in a subtidal to intertidal environment. A sequence of diagenetic events is outlined from which it is concluded that the sulphide ores are an integral part of the diagenetic process. Sulphur isotope data establish that the sulphides formed as a consequence of the bacterial reduction of sulphate, while the isotopic and geochemical composition of carbonates is shown to reflect changes in the compositions of diagenetic pore fluids. Geochemical studies indicate that the copper and cobalt bearing mineralising fluids probably had different sources. Veins which crosscut the orebodies contain hydrocarbon inclusions, and are shown to be of late diagenetic lateral secretion origin. RbiSr dating indicates that the Ore-Shale was subject to metamorphism at 529 A- 20 myrs. The sedimentology and petrology of the Marl Slate are described. Textural and geochemical studies suggest that much of the pyrite (framboidal) in the Marl Slate formed in an anoxic water column, while euhedral pyrite and base metal sulphides formed within the sediment during early diagenesis. Sulphur isotope data confirm that conditions were almost "ideal" for sulphide formation during Marl Slate deposition, the limiting factors in ore formation being the restricted supply of chalcophile elements. Carbon and oxygen isotope data, along with petrographic observations, indicate that much of the calcite and dolomite occurring in the Marl Slate is primary, and probably formed in isotopic equilibrium. A depositional model is proposed which explains all of the data presented and links the lithological variations with fluctuations in the anoxicioxic boundary layer of the water column.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The antioxidants butylated hydroxytoluene (BHT, 1 mM) and d-α-tocopherol (10 μM) completely attenuated protein degradation in murine myotubes in response to both proteolysis-inducing factor (PIF) and angiotensin II (Ang II), suggesting that the formation of reactive oxygen species (ROS) plays an important role in this process. Both PIF and Ang II induced a rapid and transient increase in ROS formation in myotubes, which followed a parabolic dose-response curve, similar to that for total protein degradation. Antioxidant treatment attenuated the increase in expression and activity of the ubiquitin-proteasome proteolytic pathway by PIF and Ang II, by preventing the activation of the transcription factor nuclear factor-κB (NF-κB), through inhibition of phosphorylation of the NF-κB inhibitor protein (I-κB) and its subsequent degradation. ROS formation by both PIF and Ang II was attenuated by diphenyleneiodonium (10 μM), suggesting that it was mediated through the NADPH oxidase system. ROS formation was also attenuated by trifluoroacetyl arachidonic acid (10 μM), a specific inhibitor of cytosolic phospholipase A2, U-73122 (5 μM) and D609 (200 μM), inhibitors of phospholipase C and calphostin C (300 nM), a highly specific inhibitor of protein kinase C (PKC), all known activators of NADPH oxidase. Myotubes containing a dominant-negative mutant of PKC did not show an increase in ROS formation in response to either PIF or Ang II. The two Rac1 inhibitors W56 (200 μM) and NSC23766 (10 μM) also attenuated both ROS formation and protein degradation induced by both PIF and Ang II. Rac1 is known to mediate signalling between the phosphatidylinositol-3 kinase (PI-3K) product and NADPH oxidase, and treatment with LY24002 (10 μM), a highly selective inhibitor of PI-3K, completely attenuated ROS production in response to both PIF and Ang II, and inhibited total protein degradation, while the inactive analogue LY303511 (100 μM) had no effect. ROS formation appears to be important in muscle atrophy in cancer cachexia, since treatment of weight losing mice bearing the MAC16 tumour with d-α-tocopherol (1 mg kg- 1) attenuated protein degradation and increased protein synthesis in skeletal muscle. © 2007 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of stress on vacancy cluster configurations in silicon is examined using molecular dynamics. At zero pressure, the shape and stability of the vacancy clusters agrees with previous atomistic results. When stress is applied the orientation of small planar clusters changes to reduce the strain energy. The preferred orientation for the vacancy clusters under stress agrees with the experimentally observed orientations of hydrogen platelets in the high stress regions of hydrogen implanted silicon. These results suggest a theory for hydrogen platelet formation. © 2005 The American Physical Society.