3 resultados para Oxalic Acid
em Aston University Research Archive
Resumo:
A strategy to enhance the thermal stability of C/SiO2 hybrids for the O2-based oxidative dehydrogenation of ethylbenzene to styrene (ST) by P addition is proposed. The preparation consists of the polymerization of furfuryl alcohol (FA) on a mesoporous precipitated SiO2. The polymerization is catalyzed by oxalic acid (OA) at 160 °C (FA:OA = 250). Phosphorous was added as H3PO4 after the polymerization and before the pyrolysis that was carried out at 700 °C and will extend the overall activation procedure. Estimation of the apparent activation energies reveals that P enhances the thermal stability under air oxidation, which is a good indication for the ODH tests. Catalytic tests show that the P/C/SiO2 hybrids are readily active, selective and indeed stable in the applied reactions conditions for 60 h time on stream. Coke build-up during the reaction attributed to the P-based acidity is substantial, leading to a reduction of the surface area and pore volume. The comparison with a conventional MWCNT evidences that the P/C/SiO2 hybrids are more active and selective at high temperatures (450–475 °C) while the difference becomes negligible at lower temperature. However, the comparison with reference P/SiO2 counterparts shows a very similar yield than the hybrids but more selective to ST. The benefit of the P/C/SiO2 hybrid is the lack of stabilization period, which is observed for the P/SiO2 to create an active coke overlayer. For long term operation, P/SiO2 appears to be a better choice in terms of selectivity, which is crucial for commercialization.
Resumo:
A study is reported on the deactivation of hydroprocessing catalysts and their reactivation by the removal of coke and metal foulants. The literature on hydrotreating catalyst deactivation by coke and metals deposition, the environmental problems associated with spent catalyst disposal, and its reactivation/rejuvenation process were reviewed. Experimental studies on catalyst deactivation involved problem analysis in industrial hydroprocessing operations, through characterization of the spent catalyst, and laboratory coking studies. A comparison was made between the characteristics of spent catalysts from fixed bed and ebullating bed residue hydroprocessing reactor units and the catalyst deactivation pattern in both types of reactor systems was examined. In the laboratory the nature of initial coke deposited on the catalyst surface and its role on catalyst deactivation were studied. The influence of initial coke on catalyst surface area and porosity was significant. Both catalyst acidity and feedstock quality had a remarkable influence on the amount and the nature of the initial coke. The hydroenitrogenation function (HDN) of the catalyst was found to be deactivated more rapidly by the initial coke than the hydrodesulphurization function (HDS). In decoking experiments, special attention was paid to the initial conditions of coke combustion, since the early stages of contact between the coke on the spent catalyst surface and the oxygen are crucial in the decoking process. An increase in initial combustion temperature above 440oC and the oxygen content of the regeneration gas above 5% vanadium led to considerable sintering of the catalyst. At temperatures above 700oC there was a substantial loss of molybdenum from the catalyst, and phase transformations in the alumina support. The preferred leaching route (coked vs decoked form of spent catalyst) and a comparison of different reagents (i.e., oxalic acid and tartaric acid) and promoters (i.e., Hydrogen Peroxide and Ferric Nitrate) for better selectivity in removing the major foulant (vanadium), characterization and performance evaluation of the treated catalysts and modelling of the leaching process were addressed in spent catalyst rejuvenation studies. The surface area and pore volume increased substantially with increasing vanadium extraction from the spent catalyst; the HDS activity showed a parallel increase. The selectivity for leaching of vanadium deposits was better, and activity recovery was higher, for catalyst rejuvenated by metal leaching prior to decoking.
Resumo:
A study was made of the corrosion behaviour in the ASTM standard Nitric acid and Oxalic acid tests, of two commercial AISI type 304L steels in the as received condition and after various heat treatments. Optical microscopy and SEM, TEM and STEM in conjunction with energy dispersive x-ray analysis, were used to correlate the corrosion behaviour of these steels with their microstructure. Some evidence of phosphorus segregation at grain boundaries was found. The corrosion behaviour at microstructural level was studied by examining on the TEM thin foils of steel that had been exposed to boiling nitric acid. Banding attack in the nitric acid and oxalic acid tests was studied using SEM and EPNA and found to be due to the micro-segregation of chromium and nickel. Using two experimental series of 304L, one a 17% Cr, 91 Ni, steel with phosphorus additions from 0.006% to 0.028%, the other a 20% Cr, 121 Ni steel with boron additions from 0.0011 to 0.00B51. The effect of these elements on corrosion in the nitric acid test was studied. The effect of different cooling rates and different solution treatment temperature on the behaviour of these steels was examined. TEM and STEM in conjunction with energy-dispersive x-ray analysis were again used to study the microstructure of the steels. Phosphorus was found to affect the corrosion behaviour but no effect was found with boron.