24 resultados para Outer membrane
em Aston University Research Archive
Resumo:
Three iromps (iron-regulated outer membrane proteins) of Aeromonas salmonicida were identified by the use of specific antibodies together with Southern hybridization analysis and limited nucleotide sequencing of their genes. The results of these experiments together with a search of the international database for homologous sequences led to their identification as follows: -86 kDa iromp (FstA) as a Vibrio anguillarum Fat A homologue -82 kDa iromp (FepA) as an Escherichia coli FepA homologue -74 kDa iromp (IrpA) as an Escherichia coli Cir homologue.
Resumo:
The aim of this thesis was to investigate antibacterial agents for use in disinfectant formulation in conjunction with benzalkonium chloride (BKC), and if possible, to synthesise novel agents based upon successful structures. Development of resistance to antibacterial agents following long-term exposure of P. aeruginosa to BKC was also investigated, examining cross-resistance to clinically relevant antibiotics and determining mechanisms of resistance. In this study over 50 compounds were examined for antibacterial action against P. aeruginosa, both alone and in conjunction with BKC. Successful compounds were used to design novel agents, based upon the acridine ring structure, some of which showed synergy with BKC. In 15 of the 16 strains exposed to increasing concentrations of BKC, resistance to the disinfectant arose. Strains PAO1 and OO14 were examined further, each showing stable BKC resistance and a slightly varying profile of cross-resistance. In strain PAO1 alterations in the fatty acids of the cytoplasmic membrane, increase in expression of OprG, decrease in susceptibility to EDTA as an outer membrane permeabilising agent and an increase in negativity of the cell surface charge were observed as cells became more resistant to BKC. In strain OO14 a decrease in whole cell phosphatidylcholine content, a decrease in binding/uptake of BKC and an increase in cell surface hydrophobicity were observed as cells became more resistant to BKC. Resistance to tobramycin in strain OO14 was initially high, but fell as cells were adapted to BKC, this coincided with a quantitative reduction of plasmid DNA in the cells.
Resumo:
The effects of haem limitation and iron restriction on cells of non typable Haemophilus influenzae were investigated. Haem limitation was achieved by adding concentrations of haem to growth media which resulted in substantial decreases in final cell yields. Iron restriction was achieved by substituting protoporphyrin IX (PPIX) for haem in the growth medium and adding an iron chelator to the system. The effect of these nutrient limitations on a) outer membrane composition, and b) respiratory systems of non typable H.influenzae was investigated. Several of the strains examined produced new PPIX-specific outer membrane proteins when cultured utilising PPIX as a porphyrin source. The immune response of patients with bronchiectasis to outer membrane antigens of H.influenzae cultured under iron-restricted conditions was analysed by ELISA and immunoblotting techniques. ELISA analysis revealed that individuals with severe bronchiectasis had high titres of antibodies directed against H.influenzae OMs in both serum and sputum. Immunoblotting with homologous serum showed that where PPIX-specific OMPs were produced they were antigenic and were recognised by patients' serum. This suggested that these H.influenzae OMPs may be expressed in vivo. Additionally, the development of the immune responses to non typable H.influenzae outer membrane antigens was investigated using a rat lung model. Bacteria encased in agar beads were inoculated intratracheally into rat lungs, infection was established, and the immune response monitored for 6 weeks. The animals developed antibodies to PPIX-specific OMPs during the course of infection, providing further evidence that H.influenzae express these novel OMP antigens when growing in vivo. Studies in vitro on respiratory systems of phenotypically altered H.influenzae showed that bacteria grown utilising PPIX as a porphyrin source, or under conditions of iron-restriction produced ten fold fewer cytochromes than cells grown in nutrient excess, while haem limited H.influenzae produced no detectable cytochromes. Respiration of various substrates was depressed in haem limited and in PPIX-grown cultures as compared with cells grown in nutrient excess.
Resumo:
It has previously been shown that myo-inositol hexakisphosphate (myo- InsP6) mediates iron transport into Pseudomonas aeruginosa and overcomes iron-dependent growth inhibition. In this study, the iron transport properties of myo-inositol trisphosphate and tetrakisphosphate regio-isomers were studied. Pseudomonas aeruginosa accumulated iron (III) at similar rates whether complexed with myo-Ins(1,2,3)P3 or myo-InsP6. Iron accumulation from other compounds, notably D/L myo-Ins(1,2,4,5)P4 and another inositol trisphosphate regio-isomer, D-myo-Ins(1,4,5)P3, was dramatically increased. Iron transport profiles from myo-InsP6 into mutants lacking the outer membrane porins oprF, oprD and oprP were similar to the wild-type, indicating that these porins are not involved in the transport process. The rates of reduction of iron (III) to iron (II) complexed to any of the compounds by a Ps. aeruginosa cell lysate were similar, suggesting that a reductive mechanism is not the rate-determining step.
Resumo:
The performances of five different ESI sources coupled to a polystyrene-divinylbenzene monolithic column were compared in a series of LC-ESI-MS/MS analyses of Escherichia coli outer membrane proteins. The sources selected for comparison included two different modifications of the standard electrospray source, a commercial low-flow sprayer, a stainless steel nanospray needle and a coated glass Picotip. Respective performances were judged on sensitivity and the number and reproducibility of significant protein identifications obtained through the analysis of multiple identical samples. Data quality varied between that of a ground silica capillary, with 160 total protein identifications, the lowest number of high quality peptide hits obtained (3012), and generally peaks of lower intensity; and a stainless steel nanospray needle, which resulted in increased precursor ion abundance, the highest-quality peptide fragmentation spectra (5414) and greatest number of total protein identifications (259) exhibiting the highest MASCOT scores (average increase in score of 27.5% per identified protein). The data presented show that, despite increased variability in comparative ion intensity, the stainless steel nanospray needle provides the highest overall sensitivity. However, the resulting data were less reproducible in terms of proteins identified in complex mixtures -- arguably due to an increased number of high intensity precursor ion candidates.
Resumo:
A study was made of the effect of supplementing a rich 3% (w/v) tryptone soya broth (TSB) medium and a poorer 1.7% (w/v) tryptone-based medium with glucose, maltose and glycogen, as carbon sources, on growth and exoprotein formation by Aeromonas salmonicida. In TSB, glucose inhibited growth and repressed exoprotein formation whilst maltose and glycogen had little effect, up to 20 h, when compared with an unsupplemented control. By contrast, in the poorer medium, over a 24-h incubation period, growth was stimulated three-fold by glycogen, and whilst exoprotein formation was low in comparison with that observed in TSB, the greatest production was observed in the presence of glycogen. Extracellular alpha-amylase was measured in the tryptone medium in the presence of the three carbon sources and the highest level, produced in the presence of glycogen, was 1.6 times that with added maltose whilst none was detectable with glucose present. This pattern was repeated in the case of the maltose-inducible porin, LamB, of the outer membrane.
Resumo:
Bacterial resistance to antibiotics and biocides is a prevalent problem, which may be exacerbated by the commonplace and often unnecessary inclusion of biocides into domestic products. Addition of antimicrobials, to domestic disinfectants has raised concern about promoting microbial resistance and potential cross-resistance to therapeutic antibiotics. This study investigated the potential for resistance in Salmonella enterica serovars Enteritidis, Typhimurium, Virchow and Escherichia call 0157 to commonly used biocides, to identify mechanisms underlying resistance and whether these provided cross-resistance to antibiotics. Salmonella enterica and E. coli 0157 strains were serially exposed to sub-inhibitory. concentrations of erythromycin (ERY), benzalkonium chloride (BKC), chlorhexidine hydrochloride (CHX)and triclosan (TLN). Once resistance was achieved permeability changes in the outer membrane, including LPS, cell surface charge and hydrophobicityand the presence of,an active efflux were investigated as possible resistance candidates. Thin layer chromatography (TLC) and Gas chromatography (GC) were carried out to examine fatty acid and lipid changes in E. coli 0157 isolates with reduced susceptibility to TLN. Cross-resistance was studied by the Stoke's method and standard microdilution assays. Examination of the outer membrane proteins and LPS did not reveal any significant changes between parent and resistant strains. The hydrophobicity of the cells increased as the cells were passaged and became less. susceptible. An active efflux system was the most likely mechanism of resistance in all strains tested and a fab1 mutation was associated with E. coli 0157 resistant to TLN isolates. In all isolates investigated the resistance was stable for over 30 passages in biocide-free media. A high degree of cross-resistance was obtained in TLN-resjstant Escherichia coli 0157 strains, which repeatedly exerted decreased susceptibility to various antimicrobials, including chloramphenicol, erythromycin, imipenem, tetracycline and trimethoprirn:, as well as to various biocides. The results of this laboratory-based investigation suggest that it is possible for microorganisms to become resistant to biocides when repeatedly exposed to sublethal concentrations. This may be especially the case in the domestic environment where administration of biocides is poorly controlled. Eventually it could lead to the undesirable situation of resident strains becoming resistant to disinfection and cross resistant to other antimicrobials.
Resumo:
Burkholderia cepacia is an opportunistic pathogen that colonises of the lungs of cystic fibrosis (CF) patients, with a frequently fatal outcome. Antibiotic resistance is common and highly transmissible epidemic strains have been described in the UK. 37 B. cepacia isolates from clinical and botanical sources were characterised via metabolic capabilities, antibiotic sensitivity, fatty acid methyl ester (FAME) profiles restriction digest analysis of chromosomal DNA by pulsed-gel electrophoresis (PFGE) (with the use of two separate restriction enzymes) and outer membrane protein (OMP) profiles. This revealed isolates of the UK CF epidemic strain to form a distinct group with a specific OMP profile. Cluster analysis of PFGE and FAME profiles revealed the species Burkholderia gladioli and Burkholderia vietnamiensis to be more closely related to each other and to laboratory strains of B. cepacia than to the CF epidemic strain considered a member of the latter species. The epidemic strain of B. cepacia may therefore be worthy of species definition in its own right. All the strains studied showed a high level of resistance to antibiotics, including the carbapenems. Considering this, carbapenemase production by isolates of B. cepacia was investigated. A metallo-β-lactamase from a clinical strain of B. cepacia was isolated and partially purified of using Cibacron blue F3GA-coupled agarose. The resulting preparation showed a single band of β-lactamase activity (pI 8.45) after analytical isoelectric focusing. The enzyme was particularly effective in the hydrolysis of imipenem. Meropenem, biapenem, cephaloridine, ceftazidime, benzylpenicillin, ampicillin and carbenicillin were hydrolysed at a lower rate. An unusual inhibition profile was noted. Inhibition by the metal ion chelators ethylene diamine tetra acetic acid and o-phenanthroline was reversed by addition of zinc, indicating a metallo-enzyme, whilst >90% inhibition was attainable with 0.1mM concentrations of tazobactam and clavulanic acid. A study of 8 other clinical isolates showed an enzyme of pI 8.45 to be present and inducible by imipenem in each case. This enzyme was assigned PCM-I (Pseudomonas cepacia metalloenzyme I).
Resumo:
The growth of Pseudomonas aeruginosa 6750 as a biofilm was investigated using a novel system based on that of Gilbert et al (1989). The aim was to test the effect of controlled growth of the organism on antibiotic susceptibility and examine the survival of the organism as a biofilm. During the investigations it became clear that, because of the increasing growth of P.aeruginosa and production of exopolysaccharide, a growth rate controlled monolayer could not be achieved and so the method was not used further. The data, however, showed that there was an increase in the smooth colony type of the organism during growth. Investigations were focused on the survival of P.aeruginosa in batch and chemostat studies. Survival or percentage culturability, as measured by total and colony count ratio, was found to decrease both in extended batch culture and for chemostat cells with decreasing growth rate. Extended batch culture, however, did not exhibit further increases in resistance to ciprofloxacin and polymyxin B. Survival was also measured using other parameters namely the direct viable count, vital staining, effect of temperature downshift and measurement of lag. In batch culture, the most notable change was a decrease in cell size along the growth curve. This was accompanied by an increase in the cellular protein content. Protein per volume was calculated from the data which showed a marked increase in batch culture, which was not demonstrated for chemostat cells with decreasing growth rate. Outer membrane protein profiles were obtained for batch and chemostat cells. An LPS profile of batch culture cells was also demonstrated. In general, there was little difference in the outer membrane protein profiles of cells from early and late stationary phases.The result of the LPS profile showed that there appeared to be an increase in the B-band of the region of the LPS in the older stationary phase cultures.
Resumo:
The major cause of death in CF is a continuous inflammation of the lungs colonised with Pseudomonas aeruginosa and occasionally also with Burkholderia cepacia. A combination of serum IgG to LPS and serum PCT levels were found to be good markers for detection of early colonisation with P. aeruginosa. Colomycin sulphomethate (colistin E) is one of the antibiotics used to treat P. aeruginosa infections in CF. Electrophoretic methods were developed to monitor the rate of conversion of colomycin sulphomethate to the active form of the drug. Antimicrobial activity towards P. aeruginosa was generated as the sulphomethate substituents were released. Clinical resistance of P. aeruginosa to colomycin is rare, but a number of isolates have been isolated. Twelve colomycin-resistant clinical isolates were investigated to determine the mechanism of resistance. It was found that the low level of resistance was due to over expression of outer membrane protein H (OprH) in 5 isolates. A novel mechanism of resistance involving modification of the phosphate groups in LPS was identified in one of the isolates. Drugs which reduce inflammation in infected CF lungs would be of great advantage for therapy. Reducing inflammation would preserve the lung function and increase the quality of life for CF patients. Antibiotics like tetracyclines, macrolides and polymyxins were tested for their potential anti-inflammatory effects using cultured human monocytic (U937) cells which secrete the pro-inflammatory cytokines IL1- and TNF- in response to LPS from P. aeruginosa and B. cepacia. It was found that tetracyclines, and especially doxycycline, are good inhibitors of cytokine release by U937 cells and therefore could reduce the inflammatory cascade.
Resumo:
The microbial demand for iron is often met by the elaboration of siderophores into the surrounding medium and expression of cognate outer membrane receptors for the ferric siderophore complexes. Conditions of iron limitation, such as those encountered in vivo, cause Pseudomonas aeruginosa to express two high-affinity iron-uptake systems based on pyoverdin and pyochelin. These systems will operate both in the organism's natural habitat, soil and water, where the solubility of iron at neutral pH is extremely low, and in the human host where the availability of free iron is too low to sustain bacterial growth due to the iron-binding glycoproteins transferrin and lactoferrin. Cross-feeding and radiolabelled iron uptake experiments demonstrated that pyoverdin biosynthesis and uptake were highly heterogeneous amongst P.aeruginosa strains, that growth either in the presence of pyoverdin or pyochelin resulted in induction of specific IROMPs, and that induction of iron uptake is siderophore-specific. The P.aeruginosa Tn5 mutant PH1 is deficient in ferripyoverdin uptake and resistant to pyocin Sa, suggesting that the site of interaction of pyocin Sa is a ferripyoverdin receptor. Additional Tn5 mutants appeared to exploit different strategies to achieve pyocin Sa-resistance, involving modifications in expression of pyoverdin-mediated iron uptake, indicating that complex regulatory systems exist to enable these organisms to compete effectively for iron. Modulation of expression of IROMPs prompted a study of the mechanism of uptake of a semi-synthetic C(7) α-formamido substituted cephalosporin BRL 41897A. Sensitivity to this agent correlated with expression of the 75 kDa ferri-pyochelin receptor and demonstrated the potential of high-affinity iron uptake systems for targeting of novel antibiotics. Studies with ferri-pyoverdin uptake-deficient mutant PH1 indicated that expression of outer membrane protein G (OprG), which is usually expressed under iron-rich conditions and repressed under iron-deficient conditions, was perturbed. Attempts were made to clone the oprG gene using a degenerate probe based on the N-terminal amino acid sequence. A strongly hybridising HindIll restriction fragment was cloned and sequenced, but failed to reveal an open reading frame correspondmg to OprG. However, there appears to be good evidence that a part of the gene codmg for the hydrophilic membrane-associated ATP-binding component of a hitherto uncharacterised periplasmic- binding-protein-dependent transport system has been isolated. The full organisation and sequence of the operon, and substrate for this putative transport system, are yet: to be elucidated,
Resumo:
The lac promoter is widely used in plasmid expression systems, even though it is prone to catabolite repression. As a consequence glycerol is often used as an alternative carbon source. Three plasmids containing various sizes of the staphylococcal protein A (SPA) gene, which are under the control of the lac promoter were investigated in continuous culture, to evaluate the effects of nutrient limitations on their stability and expression. The fears of catabolite repression were dispelled as a low expression plasmid (pPA16) produced a greater amount of truncated SPA under glucose limiting conditions (11 ug mg-1 cell protein) when compared to that using glycerol (8 ug mg-1 cell protein). Segregational instability was also observed under glycerol limiting conditions at all the dilution rates investigated. Whereas pPA16 was relatively stable under glucose limiting conditions, with SPA production being continuous. Experiments using excess glycerol with limited ammonium increased the stability of pPA16, (when compared to limited glycerol) with expression of SPA being continuous but reduced (6 ug mg-1 cell protein). With excess glucose and limited ammonium the copy numbers remained high but expression of SPA paralled that produced under glucose limiting conditions. This might indicate that the higher levels of glucose are reducing expression (catabolite repression) or that the low level of ammonium is affecting protein production. A high expression plasmid (pPA31) produced nearly 100 ug full length SPA mg-1 cell protein, while another high expression plasmid (pPA34) producing truncated SPA proved to be very unstable. An ELISA was developed to detect the SPA produced by these experiments, which could be adapted for western blotting or immunogold probing using electron microscopy. SPA was localised in electron lucent areas present in the periplasmic space of the E. coli host harbouring pPA16. While in the same host containing pPA31, SPA was localised not only in electron lucent areas but also around the whole of the outer-membrane.
Resumo:
Chronic experimental lung infection in rats was induced by intratracheal inoculation of agar beads containing Pseudomonas aeruginosa. Bacteria were recovered directly without subculture from the lungs of rats at 14 days post-infection and the outer membrane (OM) antigens were studied. The results indicated that bacteria grew under iron-restricted conditions as revealed by the expression of several iron-regulated membrane proteins (IRMPs) which could also be observed when the isolate was grown under iron-depleted conditions in laboratory media. The antibody response to P. aeruginosa OM protein antigens was investigated by immunoblotting with serum and lung fluid from infected rats. These fluids contained antibodies to all the major OM proteins, including the IRMPs, and protein H1. Results obtained using immunoblotting and enzyme-linked immunosorbent assay indicated that lipopolysaccharide (LPS) was the major antigen recognised by antibodies in sera from infected rats. The animal model was used to follow the development of the immune response to P. aeruginosa protein and LPS antigens. Immunoblotting was used to investigate the antigens recognised by antibodies in sequential serum samples. An antibody response to the IRMPs and OM proteins D, E, G and H1 and alao to rough LPS was detected as early as 4 days post-infection. Results obtained using immunoblotting and crossed immunoelectrophoresis techniques indicated that there was a progressive increase in the number of P. aeruginosa antigens recognised by antibodies in these sera. Both iron and magnesium depletion influenced protein H1 production. Antibodies in sera from patients with infections due to P. aeruginosa reacted with this antigen. Results obtained using quantitative gas-liquid chromatographic analysis indicated that growth phase and magnesium and iron depletion also affected the amount of LPS fatty acids, produced by P. aeruginosa. The silver stained SDS-polyacrylamide gels of proteinase K digested whole cell lysates of P. aeruginosa indicated that the O-antigen and core LPS were both affected by growth phase and specific nutrient depletion.