4 resultados para Oscillatory regulatory networks

em Aston University Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The protection of cyberspace has become one of the highest security priorities of governments worldwide. The EU is not an exception in this context, given its rapidly developing cyber security policy. Since the 1990s, we could observe the creation of three broad areas of policy interest: cyber-crime, critical information infrastructures and cyber-defence. One of the main trends transversal to these areas is the importance that the private sector has come to assume within them. In particular in the area of critical information infrastructure protection, the private sector is seen as a key stakeholder, given that it currently operates most infrastructures in this area. As a result of this operative capacity, the private sector has come to be understood as the expert in network and information systems security, whose knowledge is crucial for the regulation of the field. Adopting a Regulatory Capitalism framework, complemented by insights from Network Governance, we can identify the shifting role of the private sector in this field from one of a victim in need of protection in the first phase, to a commercial actor bearing responsibility for ensuring network resilience in the second, to an active policy shaper in the third, participating in the regulation of NIS by providing technical expertise. By drawing insights from the above-mentioned frameworks, we can better understand how private actors are involved in shaping regulatory responses, as well as why they have been incorporated into these regulatory networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parkinson's disease (PD) is associated with enhanced synchronization of neuronal network activity in the beta (15-30 Hz) frequency band across several nuclei of the basal ganglia (BG). Deep brain stimulation of the subthalamic nucleus (STN) appears to reduce this pathological oscillation, thereby alleviating PD symptoms. However, direct stimulation of primary motor cortex (M1) has recently been shown to be effective in reducing symptoms in PD, suggesting a role for cortex in patterning pathological rhythms. Here, we examine the properties of M1 network oscillations in coronal slices taken from rat brain. Oscillations in the high beta frequency range (layer 5, 27.8 +/- 1.1 Hz, n=6) were elicited by co-application of the glutamate receptor agonist kainic acid (400 nM) and muscarinic receptor agonist carbachol (50 mu M). Dual extracellular recordings, local application of tetrodotoxin and recordings in M1 micro-sections indicate that the activity originates within deep layers V/VI. Beta oscillations were unaffected by specific AMPA receptor blockade, abolished by the GABA type A receptor (GABAAR) antagonist picrotoxin and the gap-junction blocker carbenoxolone, and modulated by pentobarbital and zolpidem indicating dependence on networks of GABAergic interneurons and electrical coupling. High frequency stimulation (HFS) at 125 Hz in superficial layers, designed to mimic transdural/transcranial stimulation, generated gamma oscillations in layers 11 and V (incidence 95%, 69.2 +/- 7.3 Hz, n=17) with very fast oscillatory components (VFO; 100-250 Hz). Stimulation at 4 Hz, however, preferentially promoted theta activity (incidence 62.5%, 5.1 +/- 0.6 Hz, n=15) that effected strong amplitude modulation of ongoing beta activity. Stimulation at 20 Hz evoked mixed theta and gamma responses. These data suggest that within M1, evoked theta, gamma and fast oscillations may coexist with and in some cases modulate pharmacologically induced beta oscillations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Future network operation will be influenced by business and ownership models and the regulatory environment as future superfast and flexible broadband networks emerge. This paper discusses the issues affecting operators and network operations as network evolution progresses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: We investigated whether interictal thalamic dysfunction in migraine without aura (MO) patients is a primary determinant or the expression of its functional disconnection from proximal or distal areas along the somatosensory pathway. METHODS: Twenty MO patients and twenty healthy volunteers (HVs) underwent an electroencephalographic (EEG) recording during electrical stimulation of the median nerve at the wrist. We used the functional source separation algorithm to extract four functionally constrained nodes (brainstem, thalamus, primary sensory radial, and primary sensory motor tangential parietal sources) along the somatosensory pathway. Two digital filters (1-400 Hz and 450-750 Hz) were applied in order to extract low- (LFO) and high- frequency (HFO) oscillatory activity from the broadband signal. RESULTS: Compared to HVs, patients presented significantly lower brainstem (BS) and thalamic (Th) HFO activation bilaterally. No difference between the two cortical HFO as well as in LFO peak activations between the two groups was seen. The age of onset of the headache was positively correlated with HFO power in the right brainstem and thalamus. CONCLUSIONS: This study provides evidence for complex dysfunction of brainstem and thalamocortical networks under the control of genetic factors that might act by modulating the severity of migraine phenotype.