6 resultados para Orthogonal Representation

em Aston University Research Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Distributed representations (DR) of cortical channels are pervasive in models of spatio-temporal vision. A central idea that underpins current innovations of DR stems from the extension of 1-D phase into 2-D images. Neurophysiological evidence, however, provides tenuous support for a quadrature representation in the visual cortex, since even phase visual units are associated with broader orientation tuning than odd phase visual units (J.Neurophys.,88,455–463, 2002). We demonstrate that the application of the steering theorems to a 2-D definition of phase afforded by the Riesz Transform (IEEE Trans. Sig. Proc., 49, 3136–3144), to include a Scale Transform, allows one to smoothly interpolate across 2-D phase and pass from circularly symmetric to orientation tuned visual units, and from more narrowly tuned odd symmetric units to even ones. Steering across 2-D phase and scale can be orthogonalized via a linearizing transformation. Using the tiltafter effect as an example, we argue that effects of visual adaptation can be better explained by via an orthogonal rather than channel specific representation of visual units. This is because of the ability to explicitly account for isotropic and cross-orientation adaptation effect from the orthogonal representation from which both direct and indirect tilt after-effects can be explained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes a novel connectionist machine utilizing induction by a Hilbert hypercube representation. This representation offers a number of distinct advantages which are described. We construct a theoretical and practical learning machine which lies in an area of overlap between three disciplines - neural nets, machine learning and knowledge acquisition - hence it is refered to as a "coalesced" machine. To this unifying aspect is added the various advantages of its orthogonal lattice structure as against less structured nets. We discuss the case for such a fundamental and low level empirical learning tool and the assumptions behind the machine are clearly outlined. Our theory of an orthogonal lattice structure the Hilbert hypercube of an n-dimensional space using a complemented distributed lattice as a basis for supervised learning is derived from first principles on clearly laid out scientific principles. The resulting "subhypercube theory" was implemented in a development machine which was then used to test the theoretical predictions again under strict scientific guidelines. The scope, advantages and limitations of this machine were tested in a series of experiments. Novel and seminal properties of the machine include: the "metrical", deterministic and global nature of its search; complete convergence invariably producing minimum polynomial solutions for both disjuncts and conjuncts even with moderate levels of noise present; a learning engine which is mathematically analysable in depth based upon the "complexity range" of the function concerned; a strong bias towards the simplest possible globally (rather than locally) derived "balanced" explanation of the data; the ability to cope with variables in the network; and new ways of reducing the exponential explosion. Performance issues were addressed and comparative studies with other learning machines indicates that our novel approach has definite value and should be further researched.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sparse representation of astronomical images is discussed. It is shown that a significant gain in sparsity is achieved when particular mixed dictionaries are used for approximating these types of images with greedy selection strategies. Experiments are conducted to confirm (i) the effectiveness at producing sparse representations and (ii) competitiveness, with respect to the time required to process large images. The latter is a consequence of the suitability of the proposed dictionaries for approximating images in partitions of small blocks. This feature makes it possible to apply the effective greedy selection technique called orthogonal matching pursuit, up to some block size. For blocks exceeding that size, a refinement of the original matching pursuit approach is considered. The resulting method is termed "self-projected matching pursuit," because it is shown to be effective for implementing, via matching pursuit itself, the optional backprojection intermediate steps in that approach. © 2013 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis we present an overview of sparse approximations of grey level images. The sparse representations are realized by classic, Matching Pursuit (MP) based, greedy selection strategies. One such technique, termed Orthogonal Matching Pursuit (OMP), is shown to be suitable for producing sparse approximations of images, if they are processed in small blocks. When the blocks are enlarged, the proposed Self Projected Matching Pursuit (SPMP) algorithm, successfully renders equivalent results to OMP. A simple coding algorithm is then proposed to store these sparse approximations. This is shown, under certain conditions, to be competitive with JPEG2000 image compression standard. An application termed image folding, which partially secures the approximated images is then proposed. This is extended to produce a self contained folded image, containing all the information required to perform image recovery. Finally a modified OMP selection technique is applied to produce sparse approximations of Red Green Blue (RGB) images. These RGB approximations are then folded with the self contained approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A dedicated algorithm for sparse spectral representation of music sound is presented. The goal is to enable the representation of a piece of music signal as a linear superposition of as few spectral components as possible, without affecting the quality of the reproduction. A representation of this nature is said to be sparse. In the present context sparsity is accomplished by greedy selection of the spectral components, from an overcomplete set called a dictionary. The proposed algorithm is tailored to be applied with trigonometric dictionaries. Its distinctive feature being that it avoids the need for the actual construction of the whole dictionary, by implementing the required operations via the fast Fourier transform. The achieved sparsity is theoretically equivalent to that rendered by the orthogonal matching pursuit (OMP) method. The contribution of the proposed dedicated implementation is to extend the applicability of the standard OMP algorithm, by reducing its storage and computational demands. The suitability of the approach for producing sparse spectral representation is illustrated by comparison with the traditional method, in the line of the short time Fourier transform, involving only the corresponding orthonormal trigonometric basis.