18 resultados para Organophilic clays

em Aston University Research Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Today, speciality use organoclays are being developed for an increasingly large number of specific applications. Many of these, including use in cosmetics, polishes, greases and paints, require that the material be free from abrasive impurities so that the product retains a smooth `feel'. The traditional `wet' method preparation of organoclays inherently removes abrasives naturally present in the parent mineral clay, but it is time-consuming and expensive. The primary objective of this thesis was to explore the alternative `dry' method (which is both quicker and cheaper but which provides no refining of the parent clay) as a process, and to examine the nature of the organoclays produced, for the production of a wide range of commercially usable organophilic clays in a facile way. Natural Wyoming bentonite contains two quite different types of silicate surface (that of the clay mineral montmorillonite and that of a quartz impurity) that may interact with the cationic surfactant added in the `dry' process production of organoclays. However, it is oil shale, and not the quartz, that is chiefly responsible for the abrasive nature of the material, although air refinement in combination with the controlled milling of the bentonite as a pretreatment may offer a route to its removal. Ion exchange of Wyoming bentonite with a long chain quaternary ammonium salt using the `dry' process affords a partially exchanged, 69-78%, organoclay, with a monolayer formation of ammonium ions in the interlayer. Excess ion pairs are sorbed on the silicate surfaces of both the clay mineral and the quartz impurity phases. Such surface sorption is enhanced by the presence of very finely divided, super paramagnetic, Fe2O3 or Fe(O)(OH) contaminating the surfaces of the major mineral components. The sorbed material is labile to washing, and induces a measurable shielding of the 29Si nuclei in both clay and quartz phases in the MAS NMR experiment, due to an anisotropic magnetic susceptibility effect. XRD data for humidified samples reveal the interlamellar regions to be strongly hydrophobic, with the by-product sodium chloride being expelled to the external surfaces. Many organic cations will exchange onto a clay. The tetracationic cyclophane, and multipurpose receptor, cyclobis(paraquat-p-phenylene) undergoes ion exchange onto Wyoming bentonite to form a pillared clay with a very regular gallery height. The major plane of the cyclophane is normal to the silicate surfaces, thus allowing the cavity to remain available for complexation. A series of group VI substituted o-dimethoxybenzenes were introduced, and shown to participate in host/guest interactions with the cyclophane. Evidence is given which suggests that the binding of the host structure to a clay substrate offers advantages, not only of transportability and usability but of stability, to the charge-transfer complex which may prove useful in a variety of commercial applications. The fundamental relationship between particle size, cation exchange capacity and chemical composition of clays was also examined. For Wyoming bentonite the extent of isomorphous substitution increases with decreasing particle size, causing the CEC to similarly increase, although the isomorphous substitution site: edge site ratio remains invarient throughout the particle size range studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quaternary ammonium exchanged laponites (Quat-laponites) show selectivity in the adsorption of phenols and chlorinated phenols. Strong adsorbate-adsorbent interactions are indicated by adsorption isotherms. Adsorption of phenols and chlorinated phenols by Quat-smectites is greater than that by the Bi Quat-Smectites prepared in this study. It is thought that the quaternary ammonium exchanged smectite components of the Bi Quat-smectites interact with each other (adsorbent-adsorbent interactions) reducing the number of sites available for adsorbate-adsorbent interactions. Solidification/stabilisation studies of 2-chlorophenol show that a blend of ground granulated blast furnace slag and ordinary Portland cement attenuates 2-chlorophenol more effectively than ordinary Portland cement alone. Tetramethyl ammonium- (TMA-) and tetramethyl phosphonium- (TMP-) montmorillonites were exposed to solutions of phenol or chlorinated phenols. TMP- montmorillonite was the better adsorbent and preferentially adsorbed 4-chlorophenol over phenol. Hydration of the interlayer cations occurs to a greater extent in the TMA-montmorillonite than the TMP-montmorillonite restricting interlayer adsorption. Contrary to that observed for phenols and chlorinated phenols, the Quat-smectites were ineffective as adsorbents for triphenyltin hydroxide and bis(tributyltin) oxide at room temperature. Under microwave conditions, only bis(tributyltin) oxide was adsorbed by the quaternary ammonium exchanged smectites. Bis(tributyltin) oxide was adsorbed from ethanol on the surface of the smectite clays at room temperature and under microwave conditions. The adsorbate-adsorbent interactions were weak. Adsorption is accompanied by conversion of bis(tributyltin) oxide to a different tin(IV) species and the release of sodium cations from the montmorillonite interlayer region. Attempts to introduce conditions suitable for charge transfer interactions between synthesised quaternary ammonium compounds and 2,4,6-trichlorophenol are documented. Transition metal complex exchanged clays adsorb 2,4,6-trichlorophenol and phenol. Strong adsorbate-adsorbent interactions (Type I isotherms) occur when the adsorbate is 2,4,6-trichlorophenol and when the adsorbent is [Fe(bipy)3]2+ exchanged montmorillonite or [Co(bipy)3]3+ exchanged montmorillonite. The 2,2'-bipyridyl ligands of the adsorbents are electron rich and the 2,4,6-trichlorophenol is electron deficient. This may have enhanced adsorbate-adsorbent interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clay minerals, both natural and synthetic, have a wide range of applications. Smectite clays are not true insulators, their slight conductivity has been utilized by the paper industry in the development of mildly conducting paper. In particular, the synthetic hectorite clay, laponite, is employed to produce paper which is used in automated drawing offices where electro graphic printing is common. The primary objective of this thesis was to modify smectite clays, particularly laponite, to achieve enhanced conductivity. The primary objective was more readily achieved if the subsidiary objective of understanding the mechanism of conductivity was defined. The cyclic voltammograms of some cobalt complexes were studied in free solution and as clay modified electrodes to investigate the origin of electroactivity in clay modified electrodes. The electroactivity of clay modified electrodes prepared using our method can be attributed to ion pairs sorbed to the surface of the electrode, in excess of the cationic exchange capacity. However, some new observations were made concerning the co-ordination chemistry of the tri-2-pyridylamine complexes used which needed clarification. The a.c. conductivity of pressed discs of laponite RD was studied over the frequency range 12Hz- 100kHz using three electrode systems namely silver-loaded epoxy resin (paste), stainless-steel and aluminium. The a. c. conductivity of laponite consists of two components, reactive (minor) and ionic (major) which can be observed almost independently by utilizing the different electrode systems. When the temperature is increased the conductivity of laponite increases and the activation energy for conductivity can be calculated. Measurement of the conductivity of thin films of laponite RD in two crystal planes shows a degree of anisotropy in the a.c. conductivity. Powder X-ray diffraction and 119Sn Mossbauer spectroscopy studies have shown that attempts to intercalate some phenyltin compounds into laponite RD under ambient conditions result in the formation of tin(IV) oxide pillars. 119Sn Mossbauer data indicate that the order of effectiveness of conversion to pillars is in the order: Ph3SnCl > (Ph3Sn)2O, Ph2SnCl2 The organic product of the pillaring process was identified by 13C m.a.s.n.m.r. spectroscopy as trapped in the pillared lattice. This pillaring reaction is much more rapid when carried out in Teflon containers in a simple domestic microwave oven. These pillared clays are novel materials since the pillaring is achieved via neutral precursors rather than sacrificial reaction of the exchangeable cation. The pillaring reaction depends on electrophilic attack on the aryl tin bond by Brønsted acid sites within the clay. Two methods of interlamellar modification were identified which lead to enhanced conductivity of laponite, namely ion exchange and tin(IV) oxide pillaring. A monoionic potassium exchanged laponite shows a four fold increase in a.c. conductivity compared to sodium exchanged laponite RD. The increased conductivity is due to the appearence of an ionic component. The conductivity is independent of relative humidity and increases with temperature. Tin(IV) oxide pillared laponite RD samples show a significant increase in conductivity. Samples prepared from Ph2SnCl2 show an increase in excess of an order of magnitude. The conductivity of tin(IV) oxide pillared laponite samples is dominated by an ionic component.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In weak argillaceous rocks the unweathered strength may be barely sufficient to meet civil engineering reguirements and any reductjon due to weathering will be critical. This study investigates the weathering of the Lower Lias clays with particular reference to their petrography and engineering properties. Investigations revealed the Midland Basin of deposition to contain reasonable thicknesses of clay, relatively uniform in nature with a well developed weathered zone, From the available exposures, the weathering zone of the Blockley Clay pit was selected and sampled for laboratory investigations of; Structure, Mineralogy and Chemistry and Engineering Properties. The nature and orientation of the fissures in the unweathered clay were analysed. A close relationship was found to exist between the major joint set and the ground surface, with stress release due to excavation being almost negligible. Thin sections of the clay, examined for structural data, suggested that there exist layers or areas that have been disturbed as a result of density differences. Shear planes were found in both the unweathered and weathered clay, in the latter case often associated with remoulding of the material. A direct measure of remoulding was obtained from the birefringence ratio. The fabric was examined in closer detail using the scanning electron microscope. Mineralogy, as revealed by X-ray and optical techniques indicated illite as the dominant clay mineral, with kaolinite subsidiary; quartz, calcite, pyrite, chlorite/vermiculite are present as accessory minerals. Weathering changes this relationship, calcite and pyrite being removed early in the process, with illite being degraded. The cementing action of calcite and iron oxides was investigated however, this was shown to be negligible. Quantitative measurements of both fixed (with minerals) and free (oxide coatings) iron were obtained by atomic absorption, with the Fe 3+/ Fe2+ ratio obtained by Mossbauer spectroscopy, Evidence indicates that free iron oxide coatings only become important as a result of weathering with the maximum concentration in the very highly weathered material. Engineering index properties and shear strength values were taken throughout the profile, Relationships between moisture content and strength, liquid limit and iron (Fe) were obtained and a correlation between the weathering zomes and the shear strength/depth curve has been established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interlayer pores of swelling 2:1 clays provide an ideal 2-dimensional environment in which to study confined fluids. In this paper we discuss our understanding of the structure and dynamics of interlayer fluid species in expanded clays, based primarily on the outcome of recent molecular modelling and neutron scattering studies. Counterion solvation is compared with that measured in bulk solutions, and at a local level the cation-oxygen coordination is found to be remarkably similar in these two environments. However, for the monovalent ions the contribution to the first coordination shell from the clay surfaces increases with counterion radius. This gives rise to inner-sphere (surface) complexes in the case of potassium and caesium. In this context, the location of the negative clay surface charge (i.e. arising from octahedral or tetrahedral substitution) is also found to be of major importance. Divalent cations, such as calcium, eagerly solvate to form outer-sphere complexes. These complexes are able to pin adjacent clay layers together, and thereby prevent colloidal swelling. Confined water molecules form hydrogen bonds to each other and to the clays' surfaces. In this way their local environment relaxes to close to the bulk water structure within two molecular layers of the clay surface. Finally, we discuss the way in which the simple organic molecules methane, methanol and ethylene glycol behave in the interlayer region of hydrated clays. Quasi-elastic neutron scattering of isotopically labelled interlayer CH 3OD and (CH2OD)2 in deuterated clay allows us to measure the diffusion of the CH3- and CH2-groups in both clay and liquid environments. We find that in both the one-layer methanol solvates and the two-layer glycol solvates the diffusion of the most mobile organic molecules is close to that in the bulk solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To reveal the moisture migration mechanism of the unsaturated red clays, which are sensitive to water content change and widely distributed in South China, and then rationally use them as a filling material for highway embankments, a method to measure the water content of red clay cylinders using X-ray computed tomography (CT) was proposed and verified. Then, studies on the moisture migrations in the red clays under the rainfall and ground water level were performed at different degrees of compaction. The results show that the relationship between dry density, water content, and CT value determined from X-ray CT tests can be used to nondestructively measure the water content of red clay cylinders at different migration time, which avoids the error reduced by the sample-to-sample variation. The rainfall, ground water level, and degree of compaction are factors that can significantly affect the moisture migration distance and migration rate. Some techniques, such as lowering groundwater table and increasing degree of compaction of the red clays, can be used to prevent or delay the moisture migration in highway embankments filled with red clays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grafting of antioxidants and other modifiers onto polymers by reactive extrusion, has been performed successfully by the Polymer Processing and Performance Group at Aston University. Traditionally the optimum conditions for the grafting process have been established within a Brabender internal mixer. Transfer of this batch process to a continuous processor, such as an extruder, has, typically, been empirical. To have more confidence in the success of direct transfer of the process requires knowledge of, and comparison between, residence times, mixing intensities, shear rates and flow regimes in the internal mixer and in the continuous processor.The continuous processor chosen for the current work in the closely intermeshing, co-rotating twin-screw extruder (CICo-TSE). CICo-TSEs contain screw elements that convey material with a self-wiping action and are widely used for polymer compounding and blending. Of the different mixing modules contained within the CICo-TSE, the trilobal elements, which impose intensive mixing, and the mixing discs, which impose extensive mixing, are of importance when establishing the intensity of mixing. In this thesis, the flow patterns within the various regions of the single-flighted conveying screw elements and within both the trilobal element and mixing disc zones of a Betol BTS40 CICo-TSE, have been modelled using the computational fluid dynamics package Polyflow. A major obstacle encountered when solving the flow problem within all of these sets of elements, arises from both the complex geometry and the time-dependent flow boundaries as the elements rotate about their fixed axes. Simulation of the time dependent boundaries was overcome by selecting a number of sequential 2D and 3D geometries, used to represent partial mixing cycles. The flow fields were simulated using the ideal rheological properties of polypropylene and characterised in terms of velocity vectors, shear stresses generated and a parameter known as the mixing efficiency. The majority of the large 3D simulations were performed on the Cray J90 supercomputer situated at the Rutherford-Appleton laboratories, with pre- and postprocessing operations achieved via a Silicon Graphics Indy workstation. A mechanical model was constructed consisting of various CICo-TSE elements rotating within a transparent outer barrel. A technique has been developed using coloured viscous clays whereby the flow patterns and mixing characteristics within the CICo-TSE may be visualised. In order to test and verify the simulated predictions, the patterns observed within the mechanical model were compared with the flow patterns predicted by the computational model. The flow patterns within the single-flighted conveying screw elements in particular, showed good agreement between the experimental and simulated results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Suitable methods for the assessment of the effect of freeze-thaw action upon ceramic tiles have been determined. The results obtained have been shown to be reproducible with some work in this area still warranted. The analysis of Whichford Potteries clays via a variety of analytical techniques has shown them to be a complex mix of both clay and non-clay minerals. 57Fe Mössbauer spectroscopy has highlighted the presence of both small and large particleα-Fe203, removable via acid washing. 19F MAS NMR has demonstrated that the raw Whichford Pottery clays examined have negligible fluorine content. This is unlikely to be detrimental to ceramic wares during the heating process. A unique technique was used for the identification of fluorine in solid-state systems. The exchange of various cations into Wyoming Bentonite clay by microwave methodology did not show the appearance of five co-ordinate aluminium when examined by 27Al MAS NMR. The appearance of Qo silicate was linked to an increase in the amount of tetrahedrally bound aluminium in the silicate framework. This is formed as a result of the heating process. The analysis of two Chinese clays and two Chinese clay raw materials has highlighted a possible link between the two. These have also been shown to be a mix of both clay and non-clay minerals. Layered double hydroxides formed by conventional and microwave methods exhibited interesting characteristics. The main differences between the samples examined were not found to be solely attributable to the differences between microwave and conventional methods but more attributable to different experimental conditions used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A range of chromia pillared montmorillonite and tin oxide pillared laponite clay catalysts, as well as new pillared clay materials such as cerium and europium oxide pillared montmorillonites were synthesised. Methods included both conventional ion exchange techniques and microwave enhanced methods to improve performance and/or reduce preparation time. These catalytic materials were characterised in detail both before and after use in order to study the effect of the preparation parameters (starting material, preparation method, pillaring species, hydroxyl to metal ratio etc.) and the hydro cracking procedure on their properties. This led to a better understanding of the nature of their structure and catalytic operation. These catalysts were evaluated with regards to their performance in hydrocracking coal derived liquids in a conventional microbomb reactor (carried out at Imperial College). Nearly all catalysts displayed better conversions when reused. The chromia pillared montmorillonite CM3 and the tin oxide pillared laponite SL2a showed the best "conversions". The intercalation of chromium in the form of chromia (Cr203) in the interlayer clearly increased conversion. This was attributed to the redox activity of the chromia pillar. However, this increase was not proportional to the increase in chromium content or basal spacing. In the case of tin oxide pillared laponite, the catalytic activity might have been a result of better access to the acid sites due to the delaminated nature of laponite, whose activity was promoted by the presence of tin oxide. The manipulation of the structural properties of the catalysts via pillaring did not seem to have any effect on the catalysts' activity. This was probably due to the collapse of the pillars under hydrocracking conditions as indicated by the similar basal spacing of the catalysts after use. However, the type of the pillaring species had a significant effect on conversion. Whereas pillaring with chromium and tin oxides increased the conversion exhibited by the parent clays, pillaring with cerium and europium oxides appeared to have a detrimental effect. The relatively good performance of the parent clays was attributed to their acid sites, coupled with their macropores which are able to accommodate the very high molecular mass of coal derived liquids. A microwave reactor operating at moderate conditions was modified for hydro cracking coal derived liquids and tested with the conventional catalyst NiMo on alumina. It was thought that microwave irradiation could enable conversion to occur at milder conditions than those conventionally used, coupled with a more effective use of hydrogen. The latter could lead to lower operating costs making the process cost effective. However, in practice excessive coke deposition took place leading to negative total conversion. This was probably due to a very low hydrogen pressure, unable to have any hydro cracking effect even under microwave irradiation. The decomposition of bio-oil under microwave irradiation was studied, aiming to identify the extent to which the properties of bio-oil change as a function of time, temperature, mode of heating, presence of char and catalyst. This information would be helpful not only for upgrading bio-oil to transport fuels, but also for any potential fuel application. During this study the rate constants of bio-oil's decomposition were calculated assuming first order kinetics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study of clay chemistry has been approached with three aims: - to modify the conducting properties by intercalation of tetrathiafulvalene, - to study the electrochemistry of redox-active coordination compounds immobilised on clay coated electrodes, and - to study the role of clays as reagents in inorganic glass forming reactions using mainly solid-state magic-angle-spinning NMR. TTF was intercalated by smectites containing different interlayer and lattice cations. Evidence from ESR and 57Fe Mossbauer indicated charge-transfer from TTF to structural iron in natural montmorillonite, and to interlayer Cu2+ in Cu2+ exchanged laponite. No charge transfer was observed for laponite (Na+ form) itself. Ion exchange of TTF3(BF4)2 with laponite was found to proceed quantitatively. The intercalated species were believed to be (TTF)2+ dimers. Conductivity data showed an order of magnitude increase for the intercalated clays. The mechanism is thought to be ionic rather than CT as Na+ laponite showed a similar enhancement in conductivity. Mechanically robust colloidal clay films were prepared on platinum electrodes. After immersion in solutions containing redox active complexes [Co(bpy)3]3+ and [Cr(bpy)3]3+, the films became electroactive when a potential was applied. Cyclic voltammograms obtained for both complexes were found to be of the diffusion controlled type. For [Co(bpy)3]3+ immobilised on clay coated electrodes, a one-step oxidation and four-step reduction wave was observed corresponding to a one electron stepwise reversible reduction of Co(III), through Co(II), Co(I), Co(O) to Co(I) oxidation state. For [Cr(bpy)3]3+ the electrochemistry was complicated by the presence of additional waves corresponding to the dissociation of [Cr(bpy)3]3+ into the diaquo complex. ESR and diffuse reflectance data supported such a mechanism. 29Si, 27Al and 23Na MAS NMR spectroscopy, supported by powder XRD and FTIR, was used to probe the role of clays as reagents in glass forming reactions. 29Si MAS NMR was found to be a very sensitive technique for identifying the presence and relative abundance of crystalline and non-crystalline phases. In thermal reactions of laponite formation of new mineral phases such as forsterite, akermanite, sillimanite and diopside were detected. The relative abundance of each phase was dependent on thermal history, chemical nature and concentration of the modifier oxide present. In continuing work, the effect of selected oxides on the glass forming reactions of a model feldspar composition was investigated using solid state NMR alone. Addition of network modifying oxides generally produced less negative 29Si chemical shifts and larger linewidths corresponding to a wider distribution of Si-O-Si bond angles and lengths, and a dominant aluminosilicate phase with a less polymerised structure than the starting material. 29Si linewidths and 27Al chemical shifts were respectively correlated with cationic potential and Lewis acidity of the oxide cations. Anomalous Al(4) chemical shifts were thought to be due to precipitation of aluminate phases rather than a breakdown in Lowenstein's aluminium avoidance principle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthetic hectorite, laponite has been used within the paper industry to produce mildly conducting paper for use in electrographic printing. The aim of this research was to modify laponite in order to improve the electrical conductivity. In a continuation of a previous investigation involving organotin intercalation of laponite, the organotin precursor (p-CH3,OC6H4)4Sn was synthesised and characterised using Mass Spectroscopy, Infrared Spectroscopy and elemental analysis. Results of intercalation with this compound and a range of organobismuth and organoantimony compounds suggested that a halide content within the precursor was necessary for improvement in conductivity to be observed. Organometallic intercalation of a range of organotellurium compounds with laponite provided evidence that a hydrolysis reaction on the clay surface followed by the release of hydrochloric acid was an important first step if a reaction was to occur with the clay. Atomic Absorption Spectroscopy studies have shown that the acid protons underwent exchange with the interlayer sodium ions in the clay to varying degrees. Gas-liquid Chromatography and Infrared Spectroscopy revealed that the carbon-tellurium bond remained intact. Powder X-ray diffraction revealed that there had been no increase in the basal spacing. The a.c. conductivity of the modified clays in the form of pressed discs was studied over a frequency range of 12Hz - 100kHz using two electrode systems, silver paste and stainless steel. The a.c. conductivity consists of two components, ionic and reactive. The conductivity of laponite was increased by intercalation with organometallic compounds. The most impressive increase was gained using the organotellurium precursor (p-CH3OC6H4)2TeCl2. Conductivity investigations using the stainless steel electrode where measurements are made under pressure showed that in the case of laponite, where poor particle-particle contact exists at ambient pressure, there is a two order of magnitude increase in the measured a.c. conductivity. This significant increase was not seen in modified laponites where the particle-particle contact had already been improved upon. Investigations of the clay surface using Scanning Electron Microscopy suggested that the improvement in particle-particle contact is the largest factor in the determination of the conductivity. The other important factor is the nature and the concentration of the interlayer cations. A range of clays were synthesised in order to increase the concentration of sodium interlayer cations. A sol-gel method was employed to carry out these syntheses. A conductivity evaluation showed that increasing the concentration of the sodium cations within the clay led to an increase in the conductivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The revival of terracotta and faience in British architecture was widespread, dramatic in its results and, for two decades, the subject of intense debate. However the materials have been frequently denigrated and more generally disregarded by both architects and historians. This study sets out to record and explain the rise and fall of interest in terracotta and faience, the extent and nature of the industry and the range of architectural usage in the Victorian, Edwardian and inter-war periods. The first two chapters record the faltering use of terracotta as an 'artificial stone', until the material gained its own identity, largely through the appreciation of Italian architecture. In the mid-Victorian period, terracotta will be seen to have become symbolic of the philosophy of the Victoria and Albert Museum and its Art School in attempting to reform both architecture and the decorative arts. The adoption of terracotta was furthered as much by industrial as aesthetic factors; three chapters examine how the exploitation of coal-measure clays, developments in the processes of manufacture, the changing motivation of industrialists and differing economics of production served to promote and then to hinder expansion and adaptation. The practical values of economy, durability and fire-resistance and the aesthetic potential, seen in terms of colour and decorative and sculptural modelling, became inter-related in the work of the architects who made extensive use of architectural ceramics. A correlation emerges between the free Gothic style, exemplified by the designs of Alfred Waterhouse and the use of red terracotta supplied from Ruabon, and between the eclectic Renaissance style and a buff material produced by different manufacturers.These patterns were modified as a result of the adoption of faience for facing external walls as well as interiors, and because of the new architectural requirements and tastes of the twentieth century. The general timidity in exploiting the scope for polychromatic decoration and the increasing opposition to architectural ceramics is contrasted with the most successful schemes produced for cinemas, chain-stores and factories. In the last chapter, those undertaken by the Hathern Station Brick and Terracotta Company between 1896 and 1939 are used as a case study; they confirm that manufacturers, architects and clients were all committed to creating a modern and yet decorative architecture, appropriate for new building types and that would appeal to and be comprehensible to the public.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis provides a comparative study of both sedimentology and diagenesis of Lower Permian (Rotliegend) strata, onshore and offshore U.K. (Southern North Sea). Onshore formations studied include the Bridgnorth, Penrith and Hopeman Sandstone, and are dominated by aeolian facies, with lesser amounts of interbedded fluvial sediments. Aeolian and fluvial strata in onshore basins typically grade laterally into alluvial fan breccias at basin margins. Onshore basins represent proximal examples of Rotliegend desert sediments. The Leman Sandstone Formation of the Ravenspurn area in the Southern North Sea displays a variety of facies indicative of a distal sedimentological setting; Aeolian, fluvial, sabkha, and playa lake sediments all being present. "Sheet-like" geometry of stratigraphical units within the Leman Sandstone, and alternation of fluvial and aeolian deposition was climatically controlled. Major first order bounding surfaces are laterally extensive and were produced by lacustrine transgression and regression from the north-west. Diagenesis within Permian strata was studied using standard petrographic microscopy, scanning electron microscopy, cold cathodo-Iuminescence, X-ray diffraction clay analysis, X-ray fluorescence spectroscopy, fluid inclusion microthermometry, and K-Ar dating of illites. The diagenesis of Permian sediments within onshore basins is remarkably similar, and a paragenetic sequence of early haematite, illitic clays, feldspar, kaolinite, quartz and late calcite is observed. In the Leman Sandstone formation, authigenic mineralogy is complex and includes early quartz, sulphates and dolomite, chlorite, kaolinite, late quartz, illite and siderite. Primary lithological variation, facies type, and the interdigitation and location of facies within a basin are important initial controls upon diagenesis. Subsequently, burial history, structure, the timing of gas emplacement, and the nature of sediments within underlying formations may also exersize significant controls upon diagenesis within Rotliegend strata.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyethylene (a 1:1 blend of m-LLDPE and z-LLDPE) double layer silicate clay nanocomposites were prepared by melt extrusion using a twin screw extruder. Maleic anhydride grafted polyethylene (PEgMA) was used as a compatibiliser to enhance the dispersion of two organically modified monmorilonite clays (OMMT): Closite 15A (CL15) and nanofill SE 3000 (NF), and natural montmorillonite (NaMMT). The clay dispersion and morphology obtained in the extruded nanocomposite samples were fully characterised both after processing and during photo-oxidation by a number of complementary analytical techniques. The effects of the compatibiliser, the organoclay modifier (quartenary alkyl ammonium surfactant) and the clays on the behaviour of the nanocomposites during processing and under accelerated weathering conditions were investigated. X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), rheometry and attenuated reflectance spectroscopy (ATR-FTIR) showed that the nanocomposite structure obtained is dependent on the type of clay used, the presence or absence of a compatibiliser and the environment the samples are exposed to. The results revealed that during processing PE/clay nanocomposites are formed in the presence of the compatibiliser PEgMA giving a hybrid exfoliated and intercalated structures, while microcomposites were obtained in the absence of PEgMA; the unmodified NaMMT-containing samples showed encapsulated clay structures with limited extent of dispersion in the polymer matrix. The effect of processing on the thermal stability of the OMMT-containing polymer samples was determined by measuring the additional amount of vinyl-type unsaturation formed due to a Hoffman elimination reaction that takes place in the alkyl ammonium surfactant of the modified clay at elevated temperatures. The results indicate that OMMT is responsible for the higher levels of unsaturation found in OMMT-PE samples when compared to both the polymer control and the NaMMT-PE samples and confirms the instability of the alkyl ammonium surfactant during melt processing and its deleterious effects on the durability aspects of nanocomposite products. The photostability of the PE/clay nanocomposites under accelerated weathering conditions was monitored by following changes in their infrared signatures and mechanical properties. The rate of photo-oxidation of the compatibilised PE/PEgMA/OMMT nanocomposites was much higher than that of the PE/OMMT (in absence of PEgMA) counterparts, the polymer controls and the PE–NaMMT sample. Several factors have been observed that can explain the difference in the photo-oxidative stability of the PE/clay nanocomposites including the adverse role played by the thermal decomposition products of the alkyl ammonium surfactant, the photo-instability of PEgMA, unfavourable interactions between PEgMA and products formed in the polymer as a consequence of the degradation of the surfactant on the clay, as well as a contribution from a much higher extent of exfoliated structures, determined by TEM, formed with increasing UV-exposure times.