3 resultados para Ore deposits -- Argentina
em Aston University Research Archive
Resumo:
This thesis is concerned with the role of diagenesis in forming ore deposits. Two sedimentary 'ore-types' have been examined; the Proterozoic copper-cobalt orebodies of the Konkola Basin on the Zambian Copperbelt, and the Permian Marl Slate of North East England. Facies analysis of the Konkola Basin shows the Ore-Shale to have formed in a subtidal to intertidal environment. A sequence of diagenetic events is outlined from which it is concluded that the sulphide ores are an integral part of the diagenetic process. Sulphur isotope data establish that the sulphides formed as a consequence of the bacterial reduction of sulphate, while the isotopic and geochemical composition of carbonates is shown to reflect changes in the compositions of diagenetic pore fluids. Geochemical studies indicate that the copper and cobalt bearing mineralising fluids probably had different sources. Veins which crosscut the orebodies contain hydrocarbon inclusions, and are shown to be of late diagenetic lateral secretion origin. RbiSr dating indicates that the Ore-Shale was subject to metamorphism at 529 A- 20 myrs. The sedimentology and petrology of the Marl Slate are described. Textural and geochemical studies suggest that much of the pyrite (framboidal) in the Marl Slate formed in an anoxic water column, while euhedral pyrite and base metal sulphides formed within the sediment during early diagenesis. Sulphur isotope data confirm that conditions were almost "ideal" for sulphide formation during Marl Slate deposition, the limiting factors in ore formation being the restricted supply of chalcophile elements. Carbon and oxygen isotope data, along with petrographic observations, indicate that much of the calcite and dolomite occurring in the Marl Slate is primary, and probably formed in isotopic equilibrium. A depositional model is proposed which explains all of the data presented and links the lithological variations with fluctuations in the anoxicioxic boundary layer of the water column.
Resumo:
Continental red bed sequences are host, on a worldwide scale, to a characteristic style of mineralisation which is dominated by copper, lead, zinc, uranium and vanadium. This study examines the features of sediment-hosted ore deposits in the Permo-Triassic basins of Western Europe, with particular reference to the Cu-Pb-Zn-Ba mineralisation in the Cheshire Basin, northwest England, the Pb-Ba-F deposits of the Inner Moray Firth Basin, northeast Scotland, and the Pb-rich deposits of the Eifel and Oberpfalz regions, West Germany. The deposits occur primarily but not exclusively in fluvial and aeolian sandstones on the margins of deep, avolcanic sedimentary basins containing red beds, evaporites and occasionally hydrocarbons. The host sediments range in age from Permian to Rhaetian and often contain (or can be inferred to have originally contained) organic matter. Textural studies have shown that early diagenetic quartz overgrowths precede the main episode of sulphide deposition. Fluid inclusion and sulphur isotope data have significantly constrained the genetic hypotheses for the mineralisation and a model involving the expulsion of diagenetic fluids and basinal brines up the faulted margins of sedimentary basins is favoured. Consideration of the development of these sedimentary basins suggests that ore emplacement occurred during the tectonic stage of basin evolution or during basin inversion in the Tertiary. ð34S values for barite in the Cheshire Basin range from 13.8% to 19.3% and support the theory that the Upper Triassic evaporites were the principal sulphur source for the mineralisation and provided the means by which mineralising fluids became saline. In contrast, δ34S values for barite in the Inner Moray Firth Basin (mean δ34S = + 29%) are not consistent with simple derivation of sulphur from the evaporite horizons in the basin and it is likely that sulphur-rich Jurassic shales supplied the sulphur for the mineralisation at Elgin. Possible sources of sulphur for the mineralisation in West Germany include hydrothermal vein sulphides in the underlying Devonian sediments and evaporites in the overlying Muschelkalk. Textural studies of the deeply buried sandstones in the Cheshire Basin reveal widespread dissolution and replacement of detrital phases and support the theory that red bed diagenetic processes are responsible for the release of metals into pore fluids. The ore solutions are envisaged as being warm (60-150%C), saline (9-22 wt % equiv NaCl) fluids in which metals were transported as chloride complexes. The distribution of δ34S values for sulphides in the Cheshire Basin (-1.8% to + 16%), the Moray Firth Basin (-4.8% to + 27%) and the German Permo-Triassic Basins (-22.2% to -12.2%) preclude a magmatic source for the sulphides and support the contention that sulphide precipitation is thought to result principally from sulphate reduction processes, although a decrease in temperature of the ore fluid or reaction with carbonates may also be important. Methane is invoked as the principal reducing agent in the Cheshire Basin, whilst terrestrial organic debris and bacterial reduction processes are thought to have played a major part in the genesis of the German ore deposits.
Resumo:
The sulphide mineralisation at Avoca and Parys Mountain is intimately related to volcanism and is of volcanogenic sedimentary type. The associated volcanics are predominantly pyroclastics of rhyodacitic composition and of Upper Ordovician age. They were erupted from discrete small volcanic centres, products of single local volcanic events, whose spatial distribution was related to fractures in the sialic basement of the paratectonic Caledonides of the British Isles. These fractures resulted in linear controls on volcanic, plutonic and tectonic features; they are the result of predominantly strikeslip stresses generated in this part of the European plate during closure of the Iapetus ocean. The mineralisation, predominantly pyritic, consists of a siliceous footwall zone containing bedded and cross-cutting sulphides and an overlying non-siliceous zone of bedded sulphides which may show vertical zoning of metal ratios. The sulphides are associated with chert and iron formation and have been affected by slumping. Mineralisation developed near the vents during intense fumarolic activity accompanying strong volcanism; at Parys Mountain, fumarolic activity commenced prior to, and continued after, the rnain volcanic event. Comparison with similar deposits in Newfoundland and at Bathurst, in the Canadian Appalachians, shows that mineralisation can be associated with any discrete pulse of acid magmatism in shallow subaqueous conditions. Local features of the sulphides and associated sediments are similar, although in more distal deposits (with respect to a volcanic centre) footwall alteration and mineralisation are less well developed. The nature of the basement and the presence or absence of earlier volcanics are not critical, although establishment of a local tensional regime at the time of ore formation may be important. The volcanics hosting mineralisation are rhyodacitic pyroclastics, generally related to a small centre and representing a single episode of volcanism.