51 resultados para Ordered mesoporous silicas

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surfactant templating offers a simple route to synthesize high-surface area silicas with ordered, tunable mesopore architectures. The use of these materials as versatile catalyst supports for palladium nanoparticles has been explored in the aerobic selective oxidation (selox) of allylic alcohols under mild conditions. Families of Pd/mesoporous silicas, synthesized through incipient wetness impregnation of SBA-15, SBA-16, and KIT-6, have been characterized by using nitrogen porosimetry, CO chemisorption, diffuse reflection infrared Fourier transform spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and high-resolution TEM and benchmarked in liquid phase allylic alcohol selox against a Pd/amorphous SiO2 standard. The transition from amorphous to two-dimensional parallel and three-dimensional interpenetrating porous silica networks conferred significant selox rate enhancements associated with higher surface densities of active palladium oxide sites. Dissolved oxygen was essential for insitu stabilization of palladium oxide, and thus maintenance of high activity on-stream, whereas selectivity to the desired aldehyde selox product over competing hydrogenolysis pathways was directed by using palladium metal. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of silica mesostructure upon the Pd-catalyzed selective oxidation of allylic alcohols has been investigated for amorphous and surfactant-templated SBA-15, SBA-16, and KIT-6 silicas. Significant rate enhancements can be achieved via mesopore introduction, most notably through the use of interconnected porous silica frameworks, reflecting both improved mass transport and increased palladium dispersion; catalytic activity decreases in the order Pd/KIT-6 ≈ Pd/SBA-16 > Pd/SBA-15 > Pd/SiO2. Evidence is presented that highly dispersed palladium oxide nanoparticles, not zerovalent palladium, are the catalytically active species. © 2011 American Chemical Society.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ultrathin alumina monolayers grafted onto an ordered mesoporous SBA-15 silica framework afford a composite catalyst support with unique structural properties and surface chemistry. Palladium nanoparticles deposited onto Al-SBA-15 via wet impregnation exhibit the high dispersion and surface oxidation characteristic of pure aluminas, in conjunction with the high active site densities characteristic of thermally stable, high-area mesoporous silicas. This combination confers significant rate enhancements in the aerobic selective oxidation (selox) of cinnamyl alcohol over Pd/Al-SBA-15 compared to mesoporous alumina or silica supports. Operando, liquid-phase XAS highlights the interplay between dissolved oxygen and the oxidation state of palladium nanoparticles dispersed over Al-SBA-15 towards on-stream reduction: ambient pressures of flowing oxygen are sufficient to hinder palladium oxide reduction to metal, enabling a high selox activity to be maintained, whereas rapid PdO reduction and concomitant catalyst deactivation occurs under static oxygen. Selectivity to the desired cinnamaldehyde product mirrors these trends in activity, with flowing oxygen minimising CO cleavage of the cinnamyl alcohol reactant to trans-β-methylstyrene, and of cinnamaldehyde decarbonylation to styrene. © 2013 Elsevier B.V.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Highly ordered mesoporous alumina was prepared via evaporation induced self assembly and was impregnated to afford a family of Pd/meso-Al2O3 catalysts for the aerobic selective oxidation (selox) of allylic alcohols under mild reaction conditions. CO chemisorption and XPS identify the presence of highly dispersed (0.9–2 nm) nanoparticles comprising heavily oxidised PdO surfaces, evidencing a strong palladium-alumina interaction. Surface PdO is confirmed as the catalytically active phase responsible for allylic alcohol selox, with initial rates for Pd/meso-Al2O3 far exceeding those achievable for palladium over either amorphous alumina or mesoporous silica supports. Pd/meso-Al2O3 is exceptionally active for the atom efficient selox of diverse allylic alcohols, with activity inversely proportional to alcohol mass.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Silica-supported sulfonic acids are a class of solid Brønsted acid catalysts that generally comprise organo-sulfonic acid groups tethered to silica surfaces. Methodologies to prepare organically modified silica have been widely developed in separation science and the techniques for their preparation are well documented. The application of this chemistry to prepare pure Brønsted sulfonic acid functionalized mesoporous silicas has stimulated significant research effort in this area, since these materials are interesting alternatives to commercially available sulfonated polymer resins, such as Amberlyst–15 and Nafion-H (sulfonated polystyrene and perfluorinated sulfonic acid resins respectively), which suffer from low surface areas and thermal stability. This chapter presents an overview of the preparation of mesostructured silica supported sulfonic acids, their catalytic applications and reviews the approaches taken to tune catalyst performance in organic transformations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bio-oil has successfully been utilized to prepare carbon-silica composites (CSCs) from mesoporous silicas, such as SBA-15, MCM-41, KIT-6 and MMSBA frameworks. These CSCs comprise a thin film of carbon dispersed over the silica matrix and exhibit porosity similar to the parent silica. The surface properties of the resulting materials can be simply tuned by the variation of preparation temperatures leading to a continuum of functionalities ranging from polar hydroxyl rich surfaces to carbonaceous aromatic surfaces, as reflected in solid state NMR, XPS and DRIFT analysis. N2 porosimetry, TEM and SEM images demonstrate that the composites still possess similar ordered mesostructures to the parent silica sample. The modification mechanism is also proposed: silica samples are impregnated with bio-oils (generated from the pyrolysis of waste paper) until the pores are filled, followed by the carbonization at a series of temperatures. Increasing temperature leads to the formation of a carbonaceous layer over the silica surface. The complex mixture of compounds within the bio-oil (including those molecules containing alcohols, aliphatics, carbonyls and aromatics) gives rise to the functionality of the CSCs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A low energy route for the removal of Pluronic P123 surfactant template during the synthesis of SBA-15 mesoporous silicas is explored. The conventional reflux of the hybrid inorganic-organic intermediate formed during co-condensation routes to Pr-SOH-SBA-15 is slow, utilises large solvent volumes, and requires 24 h to remove ∼90% of the organic template. In contrast, room temperature ultrasonication in a small methanol volume achieves the same degree of template extraction in only 5 min, with a 99.9% energy saving and 90% solvent reduction, without compromising the textural, acidic or catalytic properties of the resultant Pr-SOH-SBA-15. © 2014 The Royal Society of Chemistry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The grafting and sulfation of zirconia conformal monolayers on SBA-15 to create mesoporous catalysts of tunable solid acid/base character is reported. Conformal zirconia and sulfated zirconia (SZ) materials exhibit both Brönsted and Lewis acidity, with the Brönsted/Lewis acid ratio increasing with film thickness and sulfate content. Grafted zirconia films also exhibit amphoteric character, whose Brönsted/Lewis acid site ratio increases with sulfate loading at the expense of base sites. Bilayer ZrO2/SBA-15 affords an ordered mesoporous material with a high acid site loading upon sulfation and excellent hydrothermal stability. Catalytic performance of SZ/SBA-15 was explored in the aqueous phase conversion of glucose to 5-HMF, delivering a 3-fold enhancement in 5-HMF productivity over nonporous SZ counterparts. The coexistence of accessible solid basic/Lewis acid and Brönsted acid sites in grafted SZ/SBA-15 promotes the respective isomerization of glucose to fructose and dehydration of reactively formed fructose to the desired 5-HMF platform chemical.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Hydrothermal saline promoted grafting of sulfonic acid groups onto SBA-15 and periodic mesoporous organic silica analogues affords solid acid catalysts with high acid site loadings (>2.5 mmol g-1 H+), ordered mesoporosity and tunable hydrophobicity. The resulting catalysts show excellent activity for fatty acid esterification and tripalmitin transesterification to methyl palmitate, with framework phenyl groups promoting fatty acid methyl esters production. (Chemical Equation Presented)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Propylsulfonic acid derivatised SBA-15 catalysts have been prepared by post modification of SBA-15 with mercaptopropyltrimethoxysilane (MPTMS) for the upgrading of a model pyrolysis bio-oil via acetic acid esterification with benzyl alcohol in toluene. Acetic acid conversion and the rate of benzyl acetate production was proportional to the PrSO3H surface coverage, reaching a maximum for a saturation adlayer. Turnover frequencies for esterification increase with sulfonic acid surface density, suggesting a cooperative effect of adjacent PrSO3H groups. Maximal acetic acid conversion was attained under acid-rich conditions with aromatic alcohols, outperforming Amberlyst or USY zeolites, with additional excellent water tolerance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

(Figure Presented) Organized macroporous-mesoporous alumina can be obtained via a dual-templating approach. Monodispersed polystyrene beads promote macropore formation, while a P123 surfactant templating agent drives the formation of ordered hexagonal mesopores throughout the alumina framework. These well-defined pore networks coexist over a wide range of temperatures and macropore sizes. © 2009 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An alkali- and nitrate-free hydrotalcite coating has been grafted onto the surface of a hierarchically ordered macroporous-mesoporous SBA-15 template via stepwise growth of conformal alumina adlayers and their subsequent reaction with magnesium methoxide. The resulting low dimensional hydrotalcite crystallites exhibit excellent per site activity for the base catalysed transesterification of glyceryl triolein with methanol for FAME production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hierarchical macroporous-mesoporous SBA-15 silicas have been synthesised via dual-templating routes employing liquid crystalline surfactants and polystyrene beads. These offer high surface areas and well-defined, interconnecting macro- and mesopore networks with respective narrow size distributions around 300 nm and 3-5 nm for polystyrene:tetraethoxysilane ratios ≥2:1. Subsequent functionalisation with propylsulfonic acid yields the first organized, macro-mesoporous solid acid catalyst. The enhanced mass transport properties of these new bi-modal solid acid architectures confer significant rate enhancements in the transesterification of bulky glyceryl trioctanoate, and esterification of long chain palmitic acid, over pure mesoporous analogues. This paves the way to the wider application of hierarchical catalysts in biofuel synthesis and biomass conversion. © 2010 The Royal Society of Chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The utility of a hierarchically ordered nanoporous SBA-15 architecture, comprising 270 nm macropores and 5 nm mesopores (MM-SBA-15), for the catalytic aerobic selective oxidation of sterically challenging allylic alcohols is shown. Detailed bulk and surface characterization reveals that incorporation of complementary macropores into mesoporous SBA-15 enhances the dispersion of sub 2 nm Pd nanoparticles and thus their degree of surface oxidation. Kinetic profiling reveals a relationship between nanoparticle dispersion and oxidation rate, identifying surface PdO as the catalytically active phase. Hierarchical nanoporous Pd/MM-SBA-15 outperforms mesoporous analogues in allylic alcohol selective oxidation by (i) stabilizing PdO nanoparticles and (ii) dramatically improving in-pore diffusion and access to active sites by sesquiterpenoid substrates such as farnesol and phytol. © 2013 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the first catalytic application of pore-expanded KIT-6 propylsulfonic acid (PrSO H) silicas, in fatty acid esterification with methanol under mild conditions. As-synthesized PrSO H-KIT-6 exhibits a 40 and 70% enhancement in turnover frequency (TOF) toward propanoic and hexanoic acid esterification, respectively, over a PrSO H-SBA-15 analogue of similar 5 nm pore diameter, reflecting the improved mesopore interconnectivity of KIT-6 over SBA-15. However, pore accessibility becomes rate-limiting in the esterification of longer chain lauric and palmitic acids over both solid acid catalysts. This problem can be overcome via hydrothermal aging protocols which permit expansion of the KIT-6 mesopore to 7 nm, thereby doubling the TOF for lauric and palmitic acid esterification over that achievable with PrSO H-SBA-15. © 2012 American Chemical Society.