2 resultados para Order-Preserving Transformations
em Aston University Research Archive
Resumo:
Many Object recognition techniques perform some flavour of point pattern matching between a model and a scene. Such points are usually selected through a feature detection algorithm that is robust to a class of image transformations and a suitable descriptor is computed over them in order to get a reliable matching. Moreover, some approaches take an additional step by casting the correspondence problem into a matching between graphs defined over feature points. The motivation is that the relational model would add more discriminative power, however the overall effectiveness strongly depends on the ability to build a graph that is stable with respect to both changes in the object appearance and spatial distribution of interest points. In fact, widely used graph-based representations, have shown to suffer some limitations, especially with respect to changes in the Euclidean organization of the feature points. In this paper we introduce a technique to build relational structures over corner points that does not depend on the spatial distribution of the features. © 2012 ICPR Org Committee.
Resumo:
Supply chains comprise of complex processes spanning across multiple trading partners. The various operations involved generate large number of events that need to be integrated in order to enable internal and external traceability. Further, provenance of artifacts and agents involved in the supply chain operations is now a key traceability requirement. In this paper we propose a Semantic web/Linked data powered framework for the event based representation and analysis of supply chain activities governed by the EPCIS specification. We specifically show how a new EPCIS event type called "Transformation Event" can be semantically annotated using EEM - The EPCIS Event Model to generate linked data, that can be exploited for internal event based traceability in supply chains involving transformation of products. For integrating provenance with traceability, we propose a mapping from EEM to PROV-O. We exemplify our approach on an abstraction of the production processes that are part of the wine supply chain.