24 resultados para Optimizations of concrete traces
em Aston University Research Archive
Resumo:
This thesis describes an experimental study of the abrasion resistance of concrete at both the macro and micro levels. This is preceded by a review related to friction and wear, methods of test for assessing abrasion resistance, and factors influencing the abrasion resistance of concrete. A versatile test apparatus was developed to assess the abrasion resistance of concrete. This could be operated in three modes and a standardised procedure was established for all tests. A laboratory programme was undertaken to investigate the influence, on abrasion resistance, of three major factors - finishing techniques, curing regimes and surface treatments. The results clearly show that abrasion resistance was significantly affected by these factors, and tentative mechanisms were postulated to explain these observations. To substantiate these mechanisms, the concrete specimens from the macro-study were subjected to micro-structural investigation, using such techniques as 'Mercury Intrusion Forosimetry, Microhardness, Scanning Electron Microscopy, Petrography and Differential Thermal Analysis. The results of this programme clearly demonstrated that the abrasion resistance of concrete is primarily dependent on the microstructure of the concrete nearest to the surface. The viability of indirectly assessing the abrasion resistance was investigated using three non-destructive techniques - Ultrasonic Pulse Velocity, Schmidt Rebound Hardness, and the Initial Surface Absorption Test. The Initial Surface Absorption was found to be most sensitive to factors which were shown to have influenced the abrasion resistance of concrete. An extensive field investigation was also undertaken. The results were used to compare site and laboratorypractices, and the performance in the accelerated abrasion test with the service wear. From this study, criteria were developed for assessing the quality of concrete floor slabs in terms of abrasion resistance.
Resumo:
Three types of crushed rock aggregate were appraised, these being Carboniferous Sandstone, Magnesian Limestone and Jurassic Limestone. A comprehensive aggregate testing programme assessed the properties of these materials. Two series of specimen slabs were cast and power finished using recognised site procedures to assess firstly the influence of these aggregates as the coarse fraction, and secondly as the fine fraction. Each specimen slab was tested at 28 days under three regimes to simulate 2-body abrasion, 3-body abrasion and the effect of water on the abrasion of concrete. The abrasion resistance was measured using a recognised accelerated abrasion testing apparatus employing rotating steel wheels. Relationships between the aggregate and concrete properties and the abrasion resistance have been developed with the following properties being particularly important - Los Angeles Abrasion and grading of the coarse aggregate, hardness of the fine aggregate and water-cement ratio of the concrete. The sole use of cube strength as a measure of abrasion resistance has been shown to be unreliable by this work. A graphical method for predicting the potential abrasion resistance of concrete using various aggregate and concrete properties has been proposed. The effect of varying the proportion of low-grade aggregate in the mix has also been investigated. Possible mechanisms involved during abrasion have been discussed, including localised crushing and failure of the aggregate/paste bond. Aggregates from each of the groups were found to satisfy current specifications for direct finished concrete floors. This work strengthens the case for the increased use of low-grade aggregates in the future.
Resumo:
The thesis describes a programme of research designed to identify concretes for application at cryogenic temperature, in particular for storage of Liquefield Natural Gas which is maintained at a temperature of -165oC. The programme was undertaken in two stages. Stage 1 involved screening tests on seventeen concrete mixes to investigate the effects of strength grade (and water/cement ratio), air entrainment, aggregate type and cement type. Four mixes were selected on the basis of low temperature strength, residual strength after thermal cycling and permeability at ambient temperature. In Stage 2 the selected mixes were subjected to a comprehensive range of tests to measure those properties which determine the leak tightness of a concrete tank at temperatures down to -165oC. These included gas permeability; tensile strength, strain capacity, thermal expansion coefficient and elastic modulus, which in combination provide a measure of resistance to cracking; and bond to reinforcement, which is one of the determining factors regarding crack size and spacing. The results demonstrated that the properties of concrete were generally enhanced at cryogenic temperature, with reduced permeability, reduced crack proneness and, by virtue of increased bond to reinforcement, better control of cracking should it occur. Of the concretes tested, a lightweight mix containing sintered PFA aggregate exhibited the best performance at ambient and cryogenic temperature, having appreciably lower permeability and higher crack resistance than normal weight concretes of the same strength grade. The lightweight mix was most sensitive to thermal cycling, but there was limited evidence that this behaviour would not be significant if the concrete was prestressed. Relationships between various properties have been identified, the most significant being the reduction in gas permeability with increasing strain capacity. The structural implications of the changing properties of the concrete have also been considered.
Resumo:
The occurrence of spalling is a major factor in determining the fire resistance of concrete constructions. The apparently random occurrence of spalling has limited the development and application of fire resistance modelling for concrete structures. This Thesis describes an experimental investigation into the spalling of concrete on exposure to elevated temperatures. It has been shown that spalling may be categorised into four distinct types, aggregate spalling, corner spalling, surface spalling and explosive spalling. Aggregate spalling has been found to be a form of shear failure of aggregates local to the heated surface. The susceptibility of any particular concrete to aggregate spalling can be quantified from parameters which include the coefficients of thermal expansion of both the aggregate and the surrounding mortar, the size and thermal diffusivity of the aggregate and the rate of heating. Corner spalling, which is particularly significant for the fire resistance of concrete columns, is a result of concrete losing its tensile strength at elevated temperatures. Surface spalling is the result of excessive pore pressures within heated concrete. An empirical model has been developed to allow quantification of the pore pressures and a material failure model proposed. The dominant parameters are rate of heating, pore saturation and concrete permeability. Surface spalling may be alleviated by limiting pore pressure development and a number of methods to this end have been evaluated. Explosive spalling involves the catastrophic failure of a concrete element and may be caused by either of two distinct mechanisms. In the first instance, excessive pore pressures can cause explosive spalling, although the effect is limited principally to unloaded or relatively small specimens. A second cause of explosive spalling is where the superimposition of thermally induced stresses on applied load stresses exceed the concrete's strength.
Resumo:
This thesis encompasses an investigation of the behaviour of concrete frame structure under localised fire scenarios by implementing a constitutive model using finite-element computer program. The investigation phase included properties of material at elevated temperature, description of computer program, thermal and structural analyses. Transient thermal properties of material have been employed in this study to achieve reasonable results. The finite-element computer package of ANSYS is utilized in the present analyses to examine the effect of fire on the concrete frame under five various fire scenarios. In addition, a report of full-scale BRE Cardington concrete building designed to Eurocode2 and BS8110 subjected to realistic compartment fire is also presented. The transient analyses of present model included additional specific heat to the base value of dry concrete at temperature 100°C and 200°C. The combined convective-radiation heat transfer coefficient and transient thermal expansion have also been considered in the analyses. For the analyses with the transient strains included, the constitutive model based on empirical formula in a full thermal strain-stress model proposed by Li and Purkiss (2005) is employed. Comparisons between the models with and without transient strains included are also discussed. Results of present study indicate that the behaviour of complete structure is significantly different from the behaviour of individual isolated members based on current design methods. Although the current tabulated design procedures are conservative when the entire building performance is considered, it should be noted that the beneficial and detrimental effects of thermal expansion in complete structures should be taken into account. Therefore, developing new fire engineering methods from the study of complete structures rather than from individual isolated member behaviour is essential.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Several of OPC paste and concrete specimens, with different mix proportions, were cast against CPF and impermeable formwork (IF) and the profiles of pore structure, microhardness and scratch hardness of the cover zone were established. The chloride ingress and the depth of carbonation of the surface zone of concrete cast against CPF and IF were investigated. The main mechanisms controlling the ECR processes and the factors affecting such treatment were critically reviewed. Subsequently, as a means of restoring passivation of steel embedded in carbonated concrete, such HCP specimens were subjected to ECR. The influence of ECR on the chemistry of the pore solution and the microstructure of the surface and the steel/cement past interface zones were also studied. The main findings of this investigation were as follows: (a) The thickness of the microstructure gradient of cover concrete is significantly decreased with increasing period of water curing but is relatively unaffected by curing temperature, w/e ratio and the use of cement replacement materials. (b) The scratch hardness technique was shown to be potentially useful for characterising the microstructure and microhardness gradients of the surface zone. (c) A relationship between the microstructure gradient and mass transport properties of the surface zone was established. (d) The use of CPF resulted in a significant reduction in porosity of both the cement paste matrix and the aggregate/cement paste transition zone, and a marked improvement in the resistance of the surface zone to carbonation and the ingress of chloride ions. (e) The ECR treatment resulted in a marked densification of the pore structure and in changes to the pore solution chemistry and the cement phases of near-surface and steel/cement paste transition zones. This effect was more pronounced with current density, period of treatment and particularly with the use of sodium phosphate as an electrolyte.
Resumo:
The aim of this project was to carry out a fundamental study to assess the potential of colour image analysis for use in investigations of fire damaged concrete. This involved:(a) Quantification (rather than purely visual assessment) of colour change as an indicator of the thermal history of concrete.(b) Quantification of the nature and intensity of crack development as an indication of the thermal history of concrete, supporting and in addition to, colour change observations.(c) Further understanding of changes in the physical and chemical properties of aggregate and mortar matrix after heating.(d) An indication of the relationship between cracking and non-destructive methods of testing e.g. UPV or Schmidt hammer. Results showed that colour image analysis could be used to quantify the colour changes found when concrete is heated. Development of red colour coincided with significant reduction in compressive strength. Such measurements may be used to determine the thermal history of concrete by providing information regarding the temperature distribution that existed at the height of a fire. The actual colours observed depended on the types of cement and aggregate that were used to make the concrete. With some aggregates it may be more appropriate to only analyse the mortar matrix. Petrographic techniques may also be used to determine the nature and density of cracks developing at elevated temperatures and values of crack density correlate well with measurements of residual compressive strength. Small differences in crack density were observed with different cements and aggregates, although good correlations were always found with the residual compressive strength. Taken together these two techniques can provide further useful information for the evaluation of fire damaged concrete. This is especially so since petrographic analysis can also provide information on the quality of the original concrete such as cement content and water / cement ratio. Concretes made with blended cements tended to produce small differences in physical and chemical properties compared to those made with unblended cements. There is some evidence to suggest that a coarsening of pore structure in blended cements may lead to onset of cracking at lower temperatures. The use of DTA/TGA was of little use in assessing the thermal history of concrete made with blended cements. Corner spalling and sloughing off, as observed in columns, was effectively reproduced in tests on small scale specimens and the crack distributions measured. Relationships between compressive strength/cracking and non-destructive methods of testing are discussed and an outline procedure for site investigations of fire damaged concrete is described.
Resumo:
This thesis focuses on the investigation of the abrasion resistance of fibre reinforced concrete floors at both the macro and micro levels. A literature review of the available literature concerning subjects allied to the current project is included. This highlights themes relevant to wear mechanisms and the factors influencing it: factors that affect the abrasion resistance of concrete and several test methods for assessing it; and the historical development of fibres and the properties of different fibre types and their influence on concrete. Three accelerated abrasion testers were compared and critically discussed for their suitability for assessing the abrasion resistance of concrete floors. Based on the experimental findings one accelerated abrasion apparatus was selected as more appropriate to be used for carrying out the main investigations. The laboratory programme that followed was undertaken to investigate the influence of various material and construction factors on abrasion resistance. These included mix variations (w/c ratio), fibre reinforcement, geometry, type and volume, curing method and superplasticizing agents. The results clearly show that these factors significantly affected abrasion resistance and several mechanisms were presumed to explain and better understand these observations. To verify and understand these mechanisms that are accountable for the breakdown of concrete slabs, the same concrete specimens that were used for the macro-study, were also subjected to microstructutural investigations using techniques such as Microhardness examination, Mercury intrusion porosimetry and Petrographic examination. It has been found that the abrasion resistance of concrete is primarily dependent on the microstructure and porosity of the concrete nearest to the surface. The feasibility of predicting the abrasion resistance of fibre reinforced concrete floors by indirect and non-destructive methods was investigated using five methods that have frequently been used for assessing the quality of concrete. They included the initial surface absorption test, the impact test, ball cratering, the scratch test and the base hardness test. The impact resistance (BRE screed tester) and scratch resistance (Base hardness tester) were found to be the most sensitive to factors affecting abrasion resistance and hence are considered to be the most appropriate testing techniques. In an attempt to develop an appropriate method for assessing the abrasion resistance of heavy-duty industrial concrete floors, it was found that the presence of curing/sealing compound on the concrete surface at the time of accelerated abrasion testing produces inappropriate results. A preliminary investigation in the direction of modifying the Aston accelerated abrasion tester has been carried out and a more aggressive head has been developed and is pending future research towards standardisation.
Resumo:
This thesis describes an investigation of the effect of elevated temperatures upon the properties of plain concrete containing a siliceous aggregate. A complete stress-strain relationship and creep behaviour are studied. Transient effects (non-steady state) are also examined in order to simulate more realistic conditions. A temperature range of 20-700ºC is used. corresponding to the temperatures generally attained during an actual fire. In order to carry out the requisite tests, a stiff compression testing machine has been designed and built. The overall control of the test rig is provided by a logger/computer system by developing appropriate software, thus enabling the load to be held constant for any period of tlme. Before outlining any details of the development of the testing apparatus which includes an electric furnace and the.associated instrumentation, previous work on properties of both concrete and. steel at elevated temperatures is reviewed. The test programme comprises four series of tests:stress-strain tests (with and without pre-load), transient tests (heating to failure under constant stress) and creep tests (constant stress and constant temperature). Where 3 stress levels are examined: 0.2, 0.4 & 0.6 fc. The experimental results show that the properties of concrete are significantly affected by temperature and the magnitude of the load. The slope of the descending portion branch of the stress-strain curves (strain softening) is found to be temperature dependent. After normalizing the data, the stress-strain curves for different temperatures are represented by a single curve. The creep results are analysed using an approach involving the activation energy which is found to be constant. The analysis shows that the time-dependent deformation is sensibly linear with the applied stress. The total strain concept is shown to hold for the test data within limits.
Resumo:
This thesis describes work done exploring the application of expert system techniques to the domain of designing durable concrete. The nature of concrete durability design is described and some problems from the domain are discussed. Some related work on expert systems in concrete durability are described. Various implementation languages are considered - PROLOG and OPS5, and rejected in favour of a shell - CRYSTAL3 (later CRYSTAL4). Criteria for useful expert system shells in the domain are discussed. CRYSTAL4 is evaluated in the light of these criteria. Modules in various sub-domains (mix-design, sulphate attack, steel-corrosion and alkali aggregate reaction) are developed and organised under a BLACKBOARD system (called DEX). Extensions to the CRYSTAL4 modules are considered for different knowledge representations. These include LOTUS123 spreadsheets implementing models incorporating some of the mathematical knowledge in the domain. Design databases are used to represent tabular design knowledge. Hypertext representations of the original building standards texts are proposed as a tool for providing a well structured and extensive justification/help facility. A standardised approach to module development is proposed using hypertext development as a structured basis for expert systems development. Some areas of deficient domain knowledge are highlighted particularly in the use of data from mathematical models and in gaps and inconsistencies in the original knowledge source Digests.
Resumo:
The research is concerned with the application of the computer simulation technique to study the performance of reinforced concrete columns in a fire environment. The effect of three different concrete constitutive models incorporated in the computer simulation on the structural response of reinforced concrete columns exposed to fire is investigated. The material models differed mainly in respect to the formulation of the mechanical properties of concrete. The results from the simulation have clearly illustrated that a more realistic response of a reinforced concrete column exposed to fire is given by a constitutive model with transient creep or appropriate strain effect The assessment of the relative effect of the three concrete material models is considered from the analysis by adopting the approach of a parametric study, carried out using the results from a series of analyses on columns heated on three sides which produce substantial thermal gradients. Three different loading conditions were used on the column; axial loading and eccentric loading both to induce moments in the same sense and opposite sense to those induced by the thermal gradient. An axially loaded column heated on four sides was also considered. The computer modelling technique adopted separated the thermal and structural responses into two distinct computer programs. A finite element heat transfer analysis was used to determine the thermal response of the reinforced concrete columns when exposed to the ISO 834 furnace environment. The temperature distribution histories obtained were then used in conjunction with a structural response program. The effect of the occurrence of spalling on the structural behaviour of reinforced concrete column is also investigated. There is general recognition of the potential problems of spalling but no real investigation into what effect spalling has on the fire resistance of reinforced concrete members. In an attempt to address the situation, a method has been developed to model concrete columns exposed to fire which incorporates the effect of spalling. A total of 224 computer simulations were undertaken by varying the amounts of concrete lost during a specified period of exposure to fire. An array of six percentages of spalling were chosen for one range of simulation while a two stage progressive spalling regime was used for a second range. The quantification of the reduction in fire resistance of the columns against the amount of spalling, heating and loading patterns, and the time at which the concrete spalls appears to indicate that it is the amount of spalling which is the most significant variable in the reduction of fire resistance.
Resumo:
In the present work, the elastic scattering of fast neutrons from iron and concrete samples were studied at incident neutron energies of 14.0 and 14.4 Mev, using a neutron spectrometer based on the associated particle time-of-flight technique. These samples were chosen because of their importance in the design of fusion reactor shielding and construction. Using the S.A.M.E.S. accelerator and the 3 M v Dynamitron accelerator at the Radiation Centre, 14.0 and 14.4 Mev neutrons were produced by the T(d, n)4He reaction at incident deuteron energies of 140 keV and 900 keV mass III ions respectively. The time of origin of the neutron was determined by detecting the associated alpha particles. The samples used were extended flat plates of thicknesses up to 1.73 mean free paths for iron and 2.3 mean free paths for concrete. The associated alpha particles and fast neutrons were detected by means of a plastic scintillator mounted on a fast focused photomultiplier tube. The differential neutron elastic scattering cross-sections were measured for 14 Mev neutrons in various thicknesses of iron and concrete in the angular range from zero to 90°. In addition, the angular distributions of 14.4 Mev neutrons after passing through extended samples of iron were measured at several scattering angles in the same angular range. The measurements obtained for the thin sample of iron were compared with the results of Coon et al. The differential cross-sections for the thin iron sample were also analyzed on the optical model using the computer code RAROMP. For the concrete sample, the angular distribution of the thin sample was compared with the cross-sections calculated from the major constituent elements of concrete, and with the predicted values of the optical model for those elements. No published data could be found to compare with the results of the concrete differential cross-sections. In the case of thick samples of iron and concrete, the number of scattered neutrons were compared with a phenomological calculation based on the continuous slowing down model. The variation of measured cross-sections with sample thickness were found to follow the empirical relation σ = σ0 eαx. By using the universal constant "K", good fits were obtained to the experimental data. In parallel with the work at 14.0 and 14.4 Mev, an associated particle time-of-flight spectrometer was investigated which used the 2H(d,n)3He reaction for 3.02 Mev neutron energy at the incident deuteron energy of 1 Mev.
Resumo:
This thesis examines experimentally and theoretically the behaviour and ultimate strength of rectangular reinforced concrete members under combined torsion, shear and bending. The experimental investigation consists of the test results of 38 longitudinally and transversely reinforced concrete beams subjected to combined loads, ten beams of which were tested under pure torsion and self-weight. The behaviour of each test beam from application of the first increment of load until failure is presented. The effects of concrete strength, spacing of the stirrups, the amount of longitudinal steel and the breadth of the section on the ultimate torsional capacity are investigated. Based on the skew-bending mechanism, compatibility, and linear stress-strain relationship for the concrete and the steel, simple rational equations are derived for the three principal modes of failure for the following four types of failure observed in the tests: TYPE I Yielding the reinforcement, at failure, before crushing the concrete. TYPE II Yielding of the web steel only, at failure, before crushing the concrete. TYPE III Yielding of the longitudinal steel only, at failure, before crushing the concrete. TYPE IV Crushing of the concrete, at failure, before yielding of any of the reinforcement.