27 resultados para Optically transparent

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of a rapid screening method for the construction of ternary phase diagrams is described for the first time, providing detailed visualization of phase boundaries in solvent-mediated blends. Our new approach rapidly identifies ternary blend compositions that afford optically clear materials, useful for applications where transparent films are necessary. The use of 96-well plates and a scanning plate reader has enabled rapid optical characterization to be carried out by transmission spectrophotometry (450 nm), whilst the nature and extent of crystallinity was examined subsequently by wide angle X-ray scattering (WAXS). The moderating effect of cellulose acetate butyrate can be visualized as driving the position of the phase boundaries in poly(l-lactic acid)/polycaprolactone (PLLA/PCL) blends. More surprisingly, the boundaries are critically dependent on the molecular weight of the crystallizable PLLA and PCL, with higher molecular weight polymers leading to blends with reduced phase separation. On the other hand, the propensity to crystallize was more evident in shorter chains. WAXS provides a convenient way of characterizing the contribution of the individual blend components to the crystalline regions across the range of blend compositions. © 2013 Society of Chemical Industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, two linear coplanar array antennas based on Indium Phosphide (InP) substrate are designed, presented and compared in terms of bandwidth and gain. Slot introduction in combination with coplanar structure is investigated, providing enhanced antenna gain and bandwidth at the 60 GHz frequency band. In addition the proposed array antennas are evaluated in terms of integration with a high-speed photodiode and investigated in terms of matching, providing a bandwidth that reaches 2 GHz. Moreover a potential beam forming scenario combined with photonic up-conversion scheme has been proposed. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since 1996 direct femtosecond inscription in transparent dielectrics has become the subject of intensive research. This enabling technology significantly expands the technological boundaries for direct fabrication of 3D structures in a wide variety of materials. It allows modification of non-photosensitive materials, which opens the door to numerous practical applications. In this work we explored the direct femtosecond inscription of waveguides and demonstrated at least one order of magnitude enhancement in the most critical parameter - the induced contrast of the refractive index in a standard borosilicate optical glass. A record high induced refractive contrast of 2.5×10-2 is demonstrated. The waveguides fabricated possess one of the lowest losses, approaching level of Fresnel reflection losses at the glassair interface. High refractive index contrast allows the fabrication of curvilinear waveguides with low bend losses. We also demonstrated the optimisation of the inscription regimes in BK7 glass over a broad range of experimental parameters and observed a counter-intuitive increase of the induced refractive index contrast with increasing translation speed of a sample. Examples of inscription in a number of transparent dielectrics hosts using high repetition rate fs laser system (both glasses and crystals) are also presented. Sub-wavelength scale periodic inscription inside any material often demands supercritical propagation regimes, when pulse peak power is more than the critical power for selffocusing, sometimes several times higher than the critical power. For a sub-critical regime, when the pulse peak power is less than the critical power for self-focusing, we derive analytic expressions for Gaussian beam focusing in the presence of Kerr non-linearity as well as for a number of other beam shapes commonly used in experiments, including astigmatic and ring-shaped ones. In the part devoted to the fabrication of periodic structures, we report on recent development of our point-by-point method, demonstrating the shortest periodic perturbation created in the bulk of a pure fused silica sample, by using third harmonics (? =267 nm) of fundamental laser frequency (? =800 nm) and 1 kHz femtosecond laser system. To overcome the fundamental limitations of the point-by-point method we suggested and experimentally demonstrated the micro-holographic inscription method, which is based on using the combination of a diffractive optical element and standard micro-objectives. Sub-500 nm periodic structures with a much higher aspect ratio were demonstrated. From the applications point of view, we demonstrate examples of photonics devices by direct femtosecond fabrication method, including various vectorial bend-sensors fabricated in standard optical fibres, as well as a highly birefringent long-period gratings by direct modulation method. To address the intrinsic limitations of femtosecond inscription at very shallow depths we suggested the hybrid mask-less lithography method. The method is based on precision ablation of a thin metal layer deposited on the surface of the sample to create a mask. After that an ion-exchange process in the melt of Ag-containing salts allows quick and low-cost fabrication of shallow waveguides and other components of integrated optics. This approach covers the gap in direct fs inscription of shallow waveguide. Perspectives and future developments of direct femtosecond micro-fabrication are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose and demonstrate single- and multiple-passband fiber grating transmission filters that are remotely tunable by exploitation of the optical pump-induced thermal effects in Er Yb-codoped fiber sections. A repeatable, wavelength-independent induced phase shift of 0.1p mW is obtained without hysteresis and anisotropic effects. A transmission extinction ratio of .23 dB with a 3-mW change in pump power is achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We extract the distribution of both center-of-mass and angular fluctuations from three-dimensional tracking of optically trapped nanotubes. We measure the optical force and torque constants from autocorrelation and cross-correlation of the tracking signals. This allows us to isolate the angular Brownian motion. We demonstrate that nanotubes enable nanometer spatial and femtonewton force resolution in photonic force microscopy, the smallest to date. This has wide implications in nanotechnology, biotechnology, nanofluidics, and material science.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate optically tunable dispersion compensators based on pumping fiber Bragg gratings made in Er/Yb codoped fiber. The tunable dispersion for a chirped grating and also a uniform-period grating was successfully demonstrated in the experiment. The dispersion of the chirped grating was tuned from 900 to 1990 ps/nm and also from -600 to -950 ps/nm in the experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a regenerative optical grooming switch for buffer-less interconnection of metro/access and metro/core ring networks with switching functionality in time, space and wavelength domain. Key functionalities of the router are the traffic aggregation with time-slot interchanging (TSI) functionality, the WDM-to-ODTM multiplexing and the OTDM-to-WDM demultiplexing of high-speed channel into lower bit-rate tributaries as well as multi-wavelength all-optical 2R regeneration of several higher-speed signals. BER and Q-factor measurements of different switching scenarios show excellent performance with no error floor and Q-factors above 21 dB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the use of different direct detection modulation formats in a wavelength switched optical network. We find the minimum time it takes a tunable sampled grating distributed Bragg reflector laser to recover after switching from one wavelength channel to another for different modulation formats. The recovery time is investigated utilizing a field programmable gate array which operates as a time resolved bit error rate detector. The detector offers 93 ps resolution operating at 10.7 Gb/s and allows for all the data received to contribute to the measurement, allowing low bit error rates to be measured at high speed. The recovery times for 10.7 Gb/s non-return-to-zero on–off keyed modulation, 10.7 Gb/s differentially phase shift keyed signal and 21.4 Gb/s differentially quadrature phase shift keyed formats can be as low as 4 ns, 7 ns and 40 ns, respectively. The time resolved phase noise associated with laser settling is simultaneously measured for 21.4 Gb/s differentially quadrature phase shift keyed data and it shows that the phase noise coupled with frequency error is the primary limitation on transmitting immediately after a laser switching event.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A femtosecond pump-probe setup was used to measure the time resolved reflectivity of hydrogenated amorphous silicon containing crystalline silicon nanoparticles at eight different incidence angles. Results fitted with the Drude model found a scattering rate of G = 2-1+1.2×1015?s-1 at a corresponding carrier concentration of ~ 1020?cm-3. The observed scattering rate is attributed to enhanced carrier-carrier interaction in optically pumped nanocrystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical coherence tomography (OCT) is a non-invasive three-dimensional imaging system that is capable of producing high resolution in-vivo images. OCT is approved for use in clinical trials in Japan, USA and Europe. For OCT to be used effectively in a clinical diagnosis, a method of standardisation is required to assess the performance across different systems. This standardisation can be implemented using highly accurate and reproducible artefacts for calibration at both installation and throughout the lifetime of a system. Femtosecond lasers can write highly reproducible and highly localised micro-structured calibration artefacts within a transparent media. We report on the fabrication of high quality OCT calibration artefacts in fused silica using a femtosecond laser. The calibration artefacts were written in fused silica due to its high purity and ability to withstand high energy femtosecond pulses. An Amplitude Systemes s-Pulse Yb:YAG femtosecond laser with an operating wavelength of 1026 nm was used to inscribe three dimensional patterns within the highly optically transmissive substrate. Four unique artefacts have been designed to measure a wide variety of parameters, including the points spread function (PSF), modulation transfer function (MTF), sensitivity, distortion and resolution - key parameters which define the performance of the OCT. The calibration artefacts have been characterised using an optical microscope and tested on a swept source OCT. The results demonstrate that the femtosecond laser inscribed artefacts have the potential of quantitatively and qualitatively validating the performance of any OCT system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study experimentally the dynamics of quantum-dot (QD) passively mode-locked semiconductor lasers under external optical injection. The lasers demonstrated multiple dynamical states, with bifurcation boundaries that depended upon the sign of detuning variation. The area of the hysteresis loops grew monotonically at small powers of optical injection and saturated at moderate powers. At high injection levels the hysteresis decreased and eventually disappeared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a large scale numerical investigation of heterogeneous terrestrial optical communications systems and the upgrade of fourth generation terrestrial core to metro legacy interconnects to fifth generation transmission system technologies. Retrofitting (without changing infrastructure) is considered for commercial applications. ROADM are crucial enabling components for future core network developments however their re-routing ability means signals can be switched mid-link onto sub-optimally configured paths which raises new challenges in network management. System performance is determined by a trade-off between nonlinear impairments and noise, where the nonlinear signal distortions depend critically on deployed dispersion maps. This thesis presents a comprehensive numerical investigation into the implementation of phase modulated signals in transparent reconfigurable wavelength division multiplexed fibre optic communication terrestrial heterogeneous networks. A key issue during system upgrades is whether differential phase encoded modulation formats are compatible with the cost optimised dispersion schemes employed in current 10 Gb/s systems. We explore how robust transmission is to inevitable variations in the dispersion mapping and how large the margins are when suboptimal dispersion management is applied. We show that a DPSK transmission system is not drastically affected by reconfiguration from periodic dispersion management to lumped dispersion mapping. A novel DPSK dispersion map optimisation methodology which reduces drastically the optimisation parameter space and the many ways to deploy dispersion maps is also presented. This alleviates strenuous computing requirements in optimisation calculations. This thesis provides a very efficient and robust way to identify high performing lumped dispersion compensating schemes for use in heterogeneous RZ-DPSK terrestrial meshed networks with ROADMs. A modified search algorithm which further reduces this number of configuration combinations is also presented. The results of an investigation of the feasibility of detouring signals locally in multi-path heterogeneous ring networks is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate optically tunable dispersion compensators based on pumping fiber Bragg gratings made in Er/Yb codoped fiber. The tunable dispersion for a chirped grating and also a uniform-period grating was successfully demonstrated in the experiment. The dispersion of the chirped grating was tuned from 900 to 1990 ps/nm and also from -600 to -950 ps/nm in the experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Partial reduction of racemic methoxysilanes by 1:1 complexes of lithium aluminium hydride with optically active cinchona and ephedra alkaloids give optically active silanes and methoxysilanes. Optical yields depend on the groups attached to silicon and the alkaloid used but in some cases approach 50%, The method has been used to prepare novel optically active organosilanes, possessing an asymmetric silicon centre, which are either inaccessible by any of the other available routes or would require a time consuming preparation. Such compounds are of use in the study of the mechanism of substitutions at silicon. Attempts have been made to rationalize the results of the asymmetric reductions in terms of differences in sterio and electronic interactions in diastereoisomeric transition states. Circular dichroism and optical rotatory dispersion spectra have been obtained for the optically active products in an attempt to elucidate the absolute configurations of the novel asymmetric organosilanes. The results from these studies provide a useful addition to the data so far accumulated for asymmetrically perturbed aromatic chromophores. Nuclear magnetic resonanoe studies of diastereoisomaric (-)-menthoxysilanes show that these compounds possess resonances extremely useful in the determination of optical purities for asymmetric organosilanes which possess an aromatic group. The effect of variable temperature on the spectra has revealed evidence for the conformational preferences in these compounds. Other diastereoisomeric alkoxysilanes have been prepared and their n.m.r.spectra studied in the hope of establishing trends. Exploratory studies for other asymmetric reactions proceeding at silicon have proved unfruitful.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the use of photoconductive plasmas for controlling microwave circuits and antennas on semiconductor substrates. Initial experiments show that significant changes in the reflection coefficient characteristics can be obtained by varying the length of a photo-illuminated plasma region from 0 to 2mm. The resulting structure forms the basis for further experiments involving tuneable microwave devices. © 2013 European Microwave Association.