12 resultados para Optical Reference Frame

em Aston University Research Archive


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The orientations of lines and edges are important in defining the structure of the visual environment, and observers can detect differences in line orientation within the first few hundred milliseconds of scene viewing. The present work is a psychophysical investigation of the mechanisms of early visual orientation-processing. In experiments with briefly presented displays of line elements, observers indicated whether all the elements were uniformly oriented or whether a uniquely oriented target was present among uniformly oriented nontargets. The minimum difference between nontarget and target orientations that was required for effective target-detection (the orientation increment threshold) varied little with the number of elements and their spatial density, but the percentage of correct responses in detection of a large orientation-difference increased with increasing element density. The differing variations with element density of thresholds and percent-correct scores may indicate the operation of more than one mechanism in early visual orientation-processIng. Reducing element length caused threshold to increase with increasing number of elements, showing that the effectiveness of rapid, spatially parallel orientation-processing depends on element length. Orientational anisotropy in line-target detection has been reported previously: a coarse periodic variation and some finer variations in orientation increment threshold with nontarget orientation have been found. In the present work, the prominence of the coarse variation in relation to finer variations decreased with increasing effective viewing duration, as if the operation of coarse orientation-processing mechanisms precedes the operation of finer ones. Orientational anisotropy was prominent even when observers lay horizontally and viewed displays by looking upwards through a black cylinder that excluded all possible visual references for orientation. So, gravitational and visual cues are not essential to the definition of an orientational reference frame for early vision, and such a reference can be well defined by retinocentric neural coding, awareness of body-axis orientation, or both.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An experimental and theoretical study of the transport of mineral wool fibre agglomerates in nuclear power plant containment sumps is being performed. A racetrack channel was devised to provide data for the validation of numerical models, which are intended to model the transport of fibre agglomerates. The racetrack channel provides near uniform and steady conditions that lead to either the sedimentation or suspension of the agglomerates. Various experimental techniques were used to determine the velocity conditions and the distribution of the fibre agglomerates in the channel. The fibre agglomerates are modelled as fluid particles in the Eulerian reference frame. Simulations of pure sedimentation of a known mass and volume of agglomerations show that the transport of the fibre agglomerates can be replicated. The suspension of the fibres is also replicated in the simulations; however, the definition of the fibre agglomerate phase is strongly dependent on the selected density and diameter. Detailed information on the morphology of the fibre agglomerates is lacking for the suspension conditions, as the fibre agglomerates may undergo breakage and erosion. Therefore, ongoing work, which is described here, is being pursued to improve the experimental characterisation of the suspended transport of the fibre agglomerates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A consequence of a loss of coolant accident is the damage of adjacent insulation materials (IM). IM may then be transported to the containment sump strainers where water is drawn into the ECCS (emergency core cooling system). Blockage of the strainers by IM lead to an increased pressure drop acting on the operating ECCS pumps. IM can also penetrate the strainers, enter the reactor coolant system and then accumulate in the reactor pressure vessel. An experimental and theoretical study that concentrates on mineral wool fiber transport in the containment sump and the ECCS is being performed. The study entails fiber generation and the assessment of fiber transport in single and multi-effect experiments. The experiments include measurement of the terminal settling velocity, the strainer pressure drop, fiber sedimentation and resuspension in a channel flow and jet flow in a rectangular tank. An integrated test facility is also operated to assess the compounded effects. Each experimental facility is used to provide data for the validation of equivalent computational fluid dynamic models. The channel flow facility allows the determination of the steady state distribution of the fibers at different flow velocities. The fibers are modeled in the Eulerian-Eulerian reference frame as spherical wetted agglomerates. The fiber agglomerate size, density, the relative viscosity of the fluid-fiber mixture and the turbulent dispersion of the fibers all affect the steady state accumulation of fibers at the channel base. In the current simulations, two fiber phases are separately considered. The particle size is kept constant while the density is modified, which affects both the terminal velocity and volume fraction. The relative viscosity is only significant at higher concentrations. The numerical model finds that the fibers accumulate at the channel base even at high velocities; therefore, modifications to the drag and turbulent dispersion forces can be made to reduce fiber accumulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The technique of Satellite Laser Ranging is today a mature, important tool with applications in many area of geodynamics, geodesy and satellite dynamics. A global network of some 40 stations regularly obtains range observations with sub-cm precision to more than twelve orbiting spacecraft. At such levels of precision it is important to minimise potential sources of range bias in the observations, and part of the thesis is a study of subtle effects caused by the extended nature of the arrays of retro-reflectors on the satellites. We develop models that give a precise correction of the range measurements to the centres of mass of the geodetic satellites Lageos and Etalon, appropriate to a variety of different ranging systems, and use the Etalon values, which were not determined during pre-launch tests, in an extended orbital analysis. We have fitted continuous 2.5 year orbits to range observations of the Etalons from the global network of stations, and analysed the results by mapping the range residuals from these orbits into equivalent corrections to orbital elements over short time intervals. From these residuals we have detected and studied large un-modelled along-track accelerations associated with periods during which the satellites are undergoing eclipse by the Earth's shadow. We also find that the eccentricity residuals are significantly different for the two satellites, with Etalon-2 undergoing a year-long eccentricity anomaly similar in character to that experienced at intervals by Lageos-1. The nodal residuals show that the satellites define a very stable reference frame for Earth rotation determination, with very little drift-off during the 2.5 year period. We show that an analysis of more than about eight years of tracking data would be required to derive a significant value for 2. The reference frame defined by the station coordinates derived from the analyses shows very good agreement with that of ITRF93.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Agitating liquids in unbaffled stirred tank leads to the formation of a vortex in the region of the impeller shaft when operating in the turbulent flow regime. A numerical model is presented here that captures such a vortex. The volume of fluid model, a multiphase flow model was employed in conjunction with a multiple reference frame model and the shear stress turbulence model. The dimensions of the tank considered here, were 0.585 m for the liquid depth and tank diameter with a 0.2925 m diameter impeller at a height of 0.2925 m. The impeller considered was an eight-bladed paddle type agitator that was rotating with an angular velocity of 7.54 rad s (72 rpm) giving a Reynolds number of 10 and Froude number of 0.043. Preliminary results of a second investigation into the effect of liquid phase properties on the vortex formed are also presented. © 2006 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A method of precise characterization of surface nanoscale axial photonics (SNAP) structures with a reference fiber is proposed, analyzed, and demonstrated experimentally. The method is based on simultaneous coupling of a microfiber to a SNAP structure under test and to a reference optical fiber. Significant reduction of measurement errors associated with the environmental temperature variations and technical noise of the spectrum analyzer is demonstrated. The achieved measurement precision of the effective radius variation of the SNAP structure is 0.2 Å.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bilateral corneal blindness represents a quarter of the total blind, world-wide. The artificial cornea in assorted forms, was developed to replace opaque non-functional corneas and to return sight in otherwise hopeless cases that were not amenable to corneal grafts; believed to be 2% of corneal blind. Despite technological advances in materials design and tissue engineering no artificial cornea has provided absolute, long-term success. Formidable problems exist, due to a combination of unpredictable wound healing and unmanageable pathology. To have a solid guarantee of reliable success an artificial cornea must possess three attributes: an optical window to replace the opaque cornea; a strong, long term union to surrounding ocular tissue; and the ability to induce desired host responses. A unique artificial cornea possesses all three functional attributes- the Osteo-odonto-keratoprosthesis (OOKP). The OOKP has a high success rate and can survive for up to twenty years, but it is complicated both in structure and in surgical procedure; it is expensive and not universally available. The aim of this project was to develop a synthetic substitute for the OOKP, based upon key features of the tooth and bone structure. In doing so, surgical complexity and biological complications would be reduced. Analysis of the biological effectiveness of the OOKP showed that the structure of bone was the most crucial component for implant retention. An experimental semi-rigid hydroxyapatite framework was fabricated with a complex bone-like architecture, which could be fused to the optical window. The first method for making such a framework, was pressing and sintering of hydroxyapatite powders; however, it was not possible to fabricate a void architecture with the correct sizes and uniformity of pores. Ceramers were synthesised using alternative pore forming methods, providing for improved mechanical properties and stronger attachment to the plastic optical window. Naturally occurring skeletal structures closely match the structural features of all forms of natural bone. Synthetic casts were fabricated using the replamineform process, of desirable natural artifacts, such as coral and sponges. The final method of construction by-passed ceramic fabrication in favour of pre-formed coral derivatives and focused on methods for polymer infiltration, adhesion and fabrication. Prototypes were constructed and evaluated; a fully penetrative synthetic OOKP analogue was fabricated according to the dimensions of the OOKP. Fabrication of the cornea shaped OOKP synthetic analogue was also attempted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Fourier domain optical coherence tomography (FD-OCT), a large amount of interference data needs to be resampled from the wavelength domain to the wavenumber domain prior to Fourier transformation. We present an approach to optimize this data processing, using a graphics processing unit (GPU) and parallel processing algorithms. We demonstrate an increased processing and rendering rate over that previously reported by using GPU paged memory to render data in the GPU rather than copying back to the CPU. This avoids unnecessary and slow data transfer, enabling a processing and display rate of well over 524,000 A-scan/s for a single frame. To the best of our knowledge this is the fastest processing demonstrated to date and the first time that FD-OCT processing and rendering has been demonstrated entirely on a GPU.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a new simple method to achieve precise symbol synchronization using one start-of-frame (SOF) symbol in optical fast orthogonal frequency-division multiplexing (FOFDM) with subchannel spacing equal to half of the symbol rate per sub-carrier. The proposed method first identifies the SOF symbol, then exploits the evenly symmetric property of the discrete cosine transform in FOFDM, which is also valid in the presence of chromatic dispersion, to achieve precise symbol synchronization. We demonstrate its use in a 16.88-Gb/s phase-shifted-keying-based FOFDM system over a 124-km field-installed single-mode fiber link and show that this technique operates well in automatic precise symbol synchronization at an optical signal-to-noise ratio as low as 3 dB and after transmission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Point-probe optical fiber chem-sensors have been implemented using cladding etched fiber Bragg gratings. The sensors possess refractive index sensing capability that can be utilized to measure chemical concentrations. The Bragg wavelength shift reaches 8 nm when the index of surrounding medium changes from 1.33 to 1.44, giving maximum sensitivity more than 10 times higher than that of previously reported devices. More importantly, the dual-grating configuration of the point-probe sensors offers a temperature reference function, permitting accurate measurement of refractive index encoded chemical concentrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Point-probe optical fiber chem-sensors have been implemented using cladding etched fiber Bragg gratings. The sensors possess refractive index sensing capability that can be utilized to measure chemical concentrations. The Bragg wavelength shift reaches 8 nm when the index of surrounding medium changes from 1.33 to 1.44, giving maximum sensitivity more than 10 times higher than that of previously reported devices. More importantly, the dual-grating configuration of the point-probe sensors offers a temperature reference function, permitting accurate measurement of refractive index encoded chemical concentrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary aim of this thesis was to investigate the in vivo ocular morphological and contractile changes occurring within the accommodative apparatus prior to the onset of presbyopia, with particular reference to ciliary muscle changes with age and the origin of a myopic shift in refraction during incipient presbyopia. Commissioned semi-automated software proved capable of extracting accurate and repeatable measurements from crystalline lens and ciliary muscle Anterior Segment Optical Coherence Tomography (AS-OCT) images and reduced the subjectivity of AS-OCT image analysis. AS-OCT was utilised to document longitudinal changes in ciliary muscle morphology within an incipient presbyopic population (n=51). A significant antero-inwards shift of ciliary muscle mass was observed after 2.5 years. Furthermore, in a subgroup study (n=20), an accommodative antero-inwards movement of ciliary muscle mass was evident. After 2.5 years, the centripetal response of the ciliary muscle significantly attenuated during accommodation, whereas the antero-posterior mobility of the ciliary muscle remained invariant. Additionally, longitudinal measurement of ocular biometry revealed a significant increase in crystalline lens thickness and a corresponding decrease in anterior chamber depth after 2.5 years (n=51). Lenticular changes appear to be determinant of changes in refraction during incipient presbyopia. During accommodation, a significant increase in crystalline lens thickness and axial length was observed, whereas anterior chamber depth decreased (n=20). The change in ocular biometry per dioptre of accommodation exerted remained invariant after 2.5 years. Cross-sectional ocular biometric data were collected to quantify accommodative axial length changes from early adulthood to advanced presbyopia (n=72). Accommodative axial length elongation significantly attenuated during presbyopia, which was consistent with a significant increase in ocular rigidity during presbyopia. The studies presented in this thesis support the Helmholtz theory of accommodation and despite the reduction in centripetal ciliary muscle contractile response with age, primarily implicate lenticular changes in the development of presbyopia.