4 resultados para OpenFOAM, diesel, banco di flussaggio, open source
em Aston University Research Archive
Resumo:
Extensible Business Reporting Language (XBRL) is being adopted by European regulators as a data standard for the exchange of business information. This paper examines the approach of XBRL International (XII) to the meta-data standard's development and diffusion. We theorise the development of XBRL using concepts drawn from a model of successful open source projects. Comparison of the open source model to XBRL enables us to identify a number of interesting similarities and differences. In common with open source projects, the benefits and progress of XBRL have been overstated and 'hyped' by enthusiastic participants. While XBRL is an open data standard in terms of access to the equivalent of its 'source code' we find that the governance structure of the XBRL consortium is significantly different to a model open source approach. The barrier to participation that is created by requiring paid membership and a focus on transacting business at physical conferences and meetings is identified as particularly critical. Decisions about the technical structure of XBRL, the regulator-led pattern of adoption and the organisation of XII are discussed. Finally areas for future research are identified.
Resumo:
Monitoring land-cover changes on sites of conservation importance allows environmental problems to be detected, solutions to be developed and the effectiveness of actions to be assessed. However, the remoteness of many sites or a lack of resources means these data are frequently not available. Remote sensing may provide a solution, but large-scale mapping and change detection may not be appropriate, necessitating site-level assessments. These need to be easy to undertake, rapid and cheap. We present an example of a Web-based solution based on free and open-source software and standards (including PostGIS, OpenLayers, Web Map Services, Web Feature Services and GeoServer) to support assessments of land-cover change (and validation of global land-cover maps). Authorised users are provided with means to assess land-cover visually and may optionally provide uncertainty information at various levels: from a general rating of their confidence in an assessment to a quantification of the proportions of land-cover types within a reference area. Versions of this tool have been developed for the TREES-3 initiative (Simonetti, Beuchle and Eva, 2011). This monitors tropical land-cover change through ground-truthing at latitude / longitude degree confluence points, and for monitoring of change within and around Important Bird Areas (IBAs) by Birdlife International and the Royal Society for the Protection of Birds (RSPB). In this paper we present results from the second of these applications. We also present further details on the potential use of the land-cover change assessment tool on sites of recognised conservation importance, in combination with NDVI and other time series data from the eStation (a system for receiving, processing and disseminating environmental data). We show how the tool can be used to increase the usability of earth observation data by local stakeholders and experts, and assist in evaluating the impact of protection regimes on land-cover change.
Resumo:
Developing Cyber-Physical Systems requires methods and tools to support simulation and verification of hybrid (both continuous and discrete) models. The Acumen modeling and simulation language is an open source testbed for exploring the design space of what rigorousbut- practical next-generation tools can deliver to developers of Cyber- Physical Systems. Like verification tools, a design goal for Acumen is to provide rigorous results. Like simulation tools, it aims to be intuitive, practical, and scalable. However, it is far from evident whether these two goals can be achieved simultaneously. This paper explains the primary design goals for Acumen, the core challenges that must be addressed in order to achieve these goals, the “agile research method” taken by the project, the steps taken to realize these goals, the key lessons learned, and the emerging language design.
Resumo:
The potential for sharing environmental data and models is huge, but can be challenging for experts without specific programming expertise. We built an open-source, cross-platform framework (‘Tzar’) to run models across distributed machines. Tzar is simple to set up and use, allows dynamic parameter generation and enhances reproducibility by accessing versioned data and code. Combining Tzar with Docker helps us lower the entry barrier further by versioning and bundling all required modules and dependencies, together with the database needed to schedule work.