5 resultados para Off-shore gas platforms
em Aston University Research Archive
Resumo:
The work described represents a palynological study of Carboniferous coal seams of Upper Westphallan. A and Westphalian B age from eight off-shore boreholes sunk by the National Coal Board in Northumberland. When treated chemically the majority of the coal samples yielded well-preserved miospores which were studied by means of the optical and scanning electron microscopes. Systematic descriptions of 151 miospore species belonging to 57 genera, and including 18 new types, are given. One miospore assemblage is recognised from the coals of Upper Westphalian A age and two fUrther assemblages from those of Westphalian B age, These compare with assemblages described by earlier workers from strata of similar age elsewhere, but there are differences in the distributions of some of the more abundant taxa, and some of the stratigraphically significant species are not present. Correlations based on miospore distributions between the coal seams encountered in the eight off-shore boreholes agree fairly closely with those established by the National Coal Board on lithological criteria. Relations are discussed between palynology and palaeoecology and detailed comparisons made with the work of Smith and Butterworth 1967 from the adjacent on-shore area. It is concluded that the miospore assemblages described are restricted in that they contain very low representation of Smith's (1962) Densospore phase. This restriction, due to the relatively rapid subsidence of the depositional area, is reflected in the distributions of some of the less common spores as · well as in the abundances of species such as Densosporites sphaerotriangularis, Lycospora pusilla and Apiculatisporis irregularis.
Resumo:
Various micro-radial compressor configurations were investigated using one-dimensional meanline and computational fluid dynamics (CFD) techniques for use in a micro gas turbine (MGT) domestic combined heat and power (DCHP) application. Blade backsweep, shaft speed, and blade height were varied at a constant pressure ratio. Shaft speeds were limited to 220 000 r/min, to enable the use of a turbocharger bearing platform. Off-design compressor performance was established and used to determine the MGT performance envelope; this in turn was used to assess potential cost and environmental savings in a heat-led DCHP operating scenario within the target market of a detached family home. A low target-stage pressure ratio provided an opportunity to reduce diffusion within the impeller. Critically for DCHP, this produced very regular flow, which improved impeller performance for a wider operating envelope. The best performing impeller was a low-speed, 170 000 r/min, low-backsweep, 15° configuration producing 71.76 per cent stage efficiency at a pressure ratio of 2.20. This produced an MGT design point system efficiency of 14.85 per cent at 993 W, matching prime movers in the latest commercial DCHP units. Cost and CO2 savings were 10.7 per cent and 6.3 per cent, respectively, for annual power demands of 17.4 MWht and 6.1 MWhe compared to a standard condensing boiler (with grid) installation. The maximum cost saving (on design point) was 14.2 per cent for annual power demands of 22.62 MWht and 6.1 MWhe corresponding to an 8.1 per cent CO2 saving. When sizing, maximum savings were found with larger heat demands. When sized, maximum savings could be made by encouraging more electricity export either by reducing household electricity consumption or by increasing machine efficiency.
Resumo:
The work is a logical continuation of research started at Aston some years ago when studies were conducted on fermentations in bubble columns. The present work highlights typical design and operating problems that could arise in such systems as waste water, chemical, biochemical and petroleum operations involving three-phase, gas-liquid-solid fluidisation; such systems are in increasing use. It is believed that this is one of few studies concerned with `true' three-phase, gas-liquid-solid fluidised systems, and that this work will contribute significantly to closing some of the gaps in knowledge in this area. The research work was mainly experimentally based and involved studies of the hydrodynamic parameters, phase holdups (gas and solid), particle mixing and segregation, and phase flow dynamics (flow regime and circulation patterns). The studies have focused particularly on the solid behaviour and the influence of properties of solids present on the above parameters in three-phase, gas-liquid-solid fluidised systems containing single particle components and those containing binary and ternary mixtures of particles. All particles were near spherical in shape and two particle sizes and total concentration levels were used. Experiments were carried out in two- and three-dimensional bubble columns. Quantitative results are presented in graphical form and are supported by qualitative results from visual studies which are also shown as schematic diagrams and in photographic form. Gas and solid holdup results are compared for air-water containing single, binary and ternary component particle mixtures. It should be noted that the criteria for selection of the materials used are very important if true three-phase fluidisation is to be achieved: this is very evident when comparing the results with those in the literature. The fluid flow and circulation patterns observed were assessed for validation of the generally accepted patterns, and the author believes that the present work provides more accurate insight into the modelling of liquid circulation in bubble columns. The characteristic bubbly flow at low gas velocity in a two-phase system is suppressed in the three-phase system. The degree of mixing within the system is found to be dependent on flow regime, liquid circulation and the ratio of solid phase physical properties. Evidence of strong `trade-off' of properties is shown; the overall solid holdup is believed to be a major parameter influencing the gas holdup structure.
Resumo:
The technique of remote sensing provides a unique view of the earth's surface and considerable areas can be surveyed in a short amount of time. The aim of this project was to evaluate whether remote sensing, particularly using the Airborne Thematic Mapper (ATM) with its wide spectral range, was capable of monitoring landfill sites within an urban environment with the aid of image processing and Geographical Information Systems (GIS) methods. The regions under study were in the West Midlands conurbation and consisted of a large area in what is locally known as the Black Country containing heavy industry intermingled with residential areas, and a large single active landfill in north Birmingham. When waste is collected in large volumes it decays and gives off pollutants. These pollutants, landfill gas and leachate (a liquid effluent), are known to be injurious to vegetation and can cause stress and death. Vegetation under stress can exhibit a physiological change, detectable by the remote sensing systems used. The chemical and biological reactions that create the pollutants are exothermic and the gas and leachate, if they leave the waste, can be warmer than their surroundings. Thermal imagery from the ATM (daylight and dawn) and thermal video were obtained and used to find thermal anomalies on the area under study. The results showed that vegetation stress is not a reliable indicator of landfill gas migration, as sites within an urban environment have a cover too complex for the effects to be identified. Gas emissions from two sites were successfully detected by all the thermal imagery with the thermal ATM being the best. Although the results were somewhat disappointing, recent technical advancements in the remote sensing systems used in this project would allow geo-registration of ATM imagery taken on different occasions and the elimination of the effects of solar insolation.
Resumo:
Use of agricultural residues, like wheat or rice straw for energy generation, is the most effective measure in terms of costs and availability. The present paper focuses the need of such measure, its impact on the environment as practiced today (open burning). The application of intermediate pyrolysis technology for straw conversion in India is discussed herein. A 20 kg/h Pyroformer has been coupled to a direct quenching system without filtration. The process temperature was around 360 ?C and the yields for the product fractions, char pyrolysis oil, and non-condensable gas fractions were, 32%, 35%, and 33% respectively. The pyrolysis oil was condensed in a quenching unit using bio-diesel or diesel. The blend produced was 30 % pyrolysis liquid and 70 % bio-diesel. The engine has been tested with the pyro-oil/biooil mixture over a long term (75 hours). An overall economic analysis of the process has been carried out.