22 resultados para Of-all-temperatures
em Aston University Research Archive
Resumo:
The first syntheses of the natural products myo-inositol 1,2,3-trisphosphate and (+/-)-myo-inositol 1,2-bisphosphate are described. The protected key intermediates 4,5,6-tri-O-benzoyl-myo-inositol and (+/-)-3,4,5,6-tetra-O-benzyl-myo-inositol were phosphorylated with dibenzyl N,N-di-isopropylphosphoramidite in the presence of 1H-tetrazole and subsequent oxidation of the phosphite. The crystal structures of the synthetic intermediates (+/-)-1-O-(tert-butyldiphenylsilyl)-2,3,O-cyclohexylidene-myo-inos itol and (+/-)-4,5,6-tri-O-benzoyl-1-O-(tert-butyldiphenylsilyl)-2,3-O-cycl ohexylidene- myo-inositol are reported. myo-Inositol 1,2,3-trisphosphate (+/-)-myo-inositol 1,2-bisphosphate, and all isomeric myo-inositol tetrakisphosphates were evaluated for their ability to alter HO. production in the iron-catalysed Haber-Weiss reaction. The results demonstrated that a 1,2,3-grouping of phosphates in myo-inositol was necessary for inhibition also that (+/-)-myo-inositol 1,2-bisphosphate potentiated HO. production. myo-Inositol 1,2,3-trisphosphate resembled myo-inositol hexakisphosphate (phytic acid) in its ability to act as a siderophore by promoting iron-uptake into Pseudomonas aeruginosa.
Resumo:
A new improved design of an all-optical processor that performs modular arithmetic is presented. The modulo-processor is based on all-optical circuit of interconnected semiconductor optical amplifier logic gates. The design allows processing times of less than 1 µs for 16-bit operation at 10 Gb/s and up to 32-bit operation at 100 Gb/s.
Resumo:
We show experimentally and numerically new transient lasing regime between stable single-pulse generation and noise-like generation. We characterize qualitatively all three regimes of single pulse generation per round-trip of all-normal-dispersion fiber lasers mode-locked due to effect of nonlinear polarization evolution. We study spectral and temporal features of pulses produced in all three regimes as well as compressibility of such pulses. Simple criteria are proposed to identify lasing regime in experiment. © 2012 Optical Society of America.
Resumo:
The past decade has seen a drive to give all pupils the opportunity to study a Modern Foreign Language (MFL) in schools in England, making the teaching and learning of foreign languages part of the primary school curriculum. The Languages for All: Languages for Life (DfES, 2002) policy was introduced through the National Languages Strategy with an objective to increase the nation’s language capability. Raising the educational standard for all pupils is another government initiative with a strong emphasis on inclusion. As the Languages for All policy stresses the importance and benefits of language learning, and inclusion suggests equality and provision for all, this study examines the inclusion of all key stage 2 pupils in foreign language learning and describes perceptions and experiences of pupils, particularly those identified as having special educational needs (SEN) in their performances and negotiations in learning French. As a small scale, qualitative and ethnographically informed, this research is based on participant observation and semi-structured interviews with pupils, teachers of French, teaching assistants and parents. This study draws upon Nussbaum’s capabilities approach and Bourdieu’s concepts as theoretical foundations to analyse the ‘inclusive’ French classroom. As the capabilities approach takes people as ends not means, and goes beyond a focus on resources, it lends itself to critical thinking on issues around inclusion in education. In this context, this researcher investigates the experiences of pupils who struggle with foreign language learning because of their abilities or disabilities, and frames the discussion around the capabilities approach. The study also focuses on motivation and identity in foreign language learning, and draws upon Bourdieu’s concepts of capital, habitus and field to analyse how the participants make sense of and respond to their own circumstances in relation to their performances in the language learning process. This research thus considers Bourdieu’s concepts for a deeper understanding of issues of inequality in learning French and takes up Nussbaum’s insight that pupils may differ in what learning French means to them, and it is not how they differ, but the difference between their capability to choose and achieve what they value that should matter. The findings indicate that although, initially, the French classroom appears ‘inclusive’ due to the provision and practices of inclusion, a closer look shows it to be exclusionary. In addition, responses from the participants on the usefulness and benefits of foreign language learning are contradictory to the objectives of the Languages for All policy, illustrating the complexity of the ‘inclusive’ MFL classroom. This research concludes that structural and interpersonal practices of inclusion contribute to the disguising of exclusion in a classroom deemed ‘inclusive’. Implications are that an understanding and consideration of other aspect of life such as well-being, interests, needs and values should form a necessary part of the language policy.
Numerical investigation of all-optical add-drop multiplexing for spectrally overlapping OFDM signals
Resumo:
We propose a novel architecture for all-optical add-drop multiplexing of OFDM signals. Sub-channel extraction is achieved by means of waveform replication and coherent subtraction from the OFDM super-channel. Numerical simulations have been carried out to benchmark the performance of the architecture against critical design parameters.
Resumo:
We introduce models of heterogeneous systems with finite connectivity defined on random graphs to capture finite-coordination effects on the low-temperature behaviour of finite-dimensional systems. Our models use a description in terms of small deviations of particle coordinates from a set of reference positions, particularly appropriate for the description of low-temperature phenomena. A Born-von Karman-type expansion with random coefficients is used to model effects of frozen heterogeneities. The key quantity appearing in the theoretical description is a full distribution of effective single-site potentials which needs to be determined self-consistently. If microscopic interactions are harmonic, the effective single-site potentials turn out to be harmonic as well, and the distribution of these single-site potentials is equivalent to a distribution of localization lengths used earlier in the description of chemical gels. For structural glasses characterized by frustration and anharmonicities in the microscopic interactions, the distribution of single-site potentials involves anharmonicities of all orders, and both single-well and double-well potentials are observed, the latter with a broad spectrum of barrier heights. The appearance of glassy phases at low temperatures is marked by the appearance of asymmetries in the distribution of single-site potentials, as previously observed for fully connected systems. Double-well potentials with a broad spectrum of barrier heights and asymmetries would give rise to the well-known universal glassy low-temperature anomalies when quantum effects are taken into account. © 2007 IOP Publishing Ltd.
Resumo:
Metallocene catalyzed linear low density polyethylene (m-LLDPE) is a new generation of olefin copolymer. Based on the more recently developed metallocene-type catalysts, m-LLDPE can be synthesized with exactly controlled short chain branches and stereo-regular microstructure. The unique properties of these polymers have led to their applications in many areas. As a result, it is important to have a good understanding of the oxidation mechanism of m-LLDPE during melt processing in order to develop more effective stabilisation systems and continue to increase the performance of the material. The primary objectives of this work were, firstly, to investigate the oxidative degradation mechanisms of m-LLDPE polymers having different comonomer (I-octene) content during melt processing. Secondly, to examine the effectiveness of some commercial antioxidants on the stabilisation of m-LLDPE melt. A Ziegler-polymerized LLDPE (z-LLDPE) based on the same comonomer was chosen and processed under the same conditions for comparison with the metallocene polymers. The LLDPE polymers were processed using an internal mixer (torque rheometer, TR) and a co-rotating twin-screw extruder (TSE). The effects of processing variables (time, temperature) on the rheological (MI, MWD, rheometry) and molecular (unsaturation type and content, carbonyl compounds, chain branching) characteristics of the processed polymers were examined. It was found that the catalyst type (metallocene or Ziegler) and comonomer content of the polymers have great impact on their oxidative degradation behavior (crosslinking or chain scission) during melt processing. The metallocene polymers mainly underwent chain scission at lower temperature (<220°C) but crosslinking became predominant at higher temperature for both TR and TSE processed polymers. Generally, the more comonomers the m-LLDPE contains, a larger extent of chain scission can be expected. In contrast, crosslinking reactions were shown to be always dominant in the case of the Ziegler LLDPE. Furthermore, it is clear that the molecular weight distribution (MWD) of all LLDPE became broader after processing and tended generally to be broader at elevated temperatures and more extrusion passes. So, it can be concluded that crosslinking and chain scission are temperature dependent and occur simultaneously as competing reactions during melt processing. Vinyl is considered to be the most important unsaturated group leading to polymer crosslinking as its concentration in all the LLDPE decreased after processing. Carbonyl compounds were produced during LLDPE melt processing and ketones were shown to be the most imp0l1ant carbonyl-containing products in all processed polymers. The carbonyl concentration generally increased with temperature and extrusion passes, and the higher carbonyl content fonned in processed z-LLDPE and m-LLDPE polymers having higher comonomer content indicates their higher susceptibility of oxidative degradation. Hindered phenol and lactone antioxidants were shown to be effective in the stabilization of m-LLDPE melt when they were singly used in TSE extrusion. The combination of hindered phenol and phosphite has synergistic effect on m-LLDPE stabilization and the phenol-phosphite-Iactone mixture imparted the polymers with good stability during extrusion, especially for m-LLDPE with higher comonomer content.
Resumo:
Lead in petrol has been identified as a health hazard and attempts are being made to create a lead-free atmosphere. Through an intensive study a review is made of the various options available to the automobile and petroleum industry. The economic and atmospheric penalties coupled with automobile fuel consumption trends are calculated and presented in both graphical and tabulated form. Experimental measurements of carbon monoxide and hydrocarbon emissions are also presented for certain selected fuels. Reduction in CO and HC's with the employment of a three-way catalyst is also discussed. All tests were carried out on a Fiat 127A engine at wide open throttle and standard timing setting. A Froude dynamometer was used to vary engine speed. With the introduction of lead-free petrol, interest in combustion chamber deposits in spark ignition engines has ben renewed. These deposits cause octane requirement increase or rise in engine knock and decreased volumetric efficiency. The detrimental effect of the deposits has been attributed to the physical volume of the deposit and to changes in heat transfer. This study attempts to assess why leaded deposits, though often greater in mass and volume, yield relatively lower ORI when compared to lead-free deposits under identical operating conditions. This has been carried out by identifying the differences in the physical nature of the deposit and then through measurement of the thermal conductivity and permeability of the deposits. The measured thermal conductivity results are later used in a mathematical model to determine heat transfer rates and temperature variation across the engine wall and deposit. For the model, the walls of the combustion cylinder and top are assumed to be free of engine deposit, the major deposit being on the piston head. Seven different heat transfer equations are formulated describing heat flow at each part of the four stroke cycle, and the variation of cylinder wall area exposed to gas mixture is accounted for. The heat transfer equations are solved using numerical methods and temperature variations across the wall identified. Though the calculations have been carried out for one particular moment in the cycle, similar calculations are possible for every degree of the crank angle, and thus further information regarding location of maximum temperatures at every degree of the crank angle may also be determined. In conclusion, thermal conductivity values of leaded and lead-free deposits have been found. The fundamental concepts of a mathematical model with great potential have been formulated and it is hoped that with future work it may be used in a simulation for different engine construction materials and motor fuels, leading to better design of future prototype engines.
Resumo:
Agricultural residues from Thailand, namely stalk and rhizome of cassava plants, were employed as raw materials for bio-oil production via fast pyrolysis technology. There were two main objectives of this project. The first one was to determine the optimum pyrolysis temperature for maximising the organics yield and to investigate the properties of the bio-oils produced. To achieve this objective, pyrolysis experiments were conducted using a bench-scale (150 g/h) reactor system, followed by bio-oil analysis. It was found that the reactor bed temperature that could give the highest organics yield for both materials was 490±15ºC. At all temperatures studied, the rhizome gave about 2-4% higher organics yields than the stalk. The bio-oil derived from the rhizome had lower oxygen content, higher calorific value and better stability, thus indicating better quality than that produced from the stalk. The second objective was to improve the bio-oil properties in terms of heating value, viscosity and storage stability by the incorporation of catalyst into the pyrolysis process. Catalytic pyrolysis was initially performed in a micro-scale reactor to screen a large number of catalysts. Subsequently, seven catalysts were selected for experiments with larger-scale (150 g/h) pyrolysis unit. The catalysts were zeolite and related materials (ZSM-5, Al-MCM-41 and Al-MSU-F), commercial catalysts (Criterion-534 and MI-575), copper chromite and ash. Additionally, the combination of two catalysts in series was investigated. These were Criterion-534/ZSM-5 and Al-MSU-F/ZSM-5. The results showed that all catalysts could improve the bio-oils properties as they enhanced cracking and deoxygenation reactions and in some cases such as ZSM-5, Criterion-534 and Criterion-534/ZSM-5, valuable chemicals like hydrocarbons and light phenols were produced. The highest concentration of these compounds was obtained with Criterion-534/ZSM-5.
Resumo:
Mõssbauer spectroscopy and X-ray diffraction of five coals revealed the presence of pyrite, illite, kaolinite and Quartz, together with other minor phases. Analysis of the coal ashes indicated the formation of hematite and an Fe (3+) paramagnetic phase, the latter resulting from .the dehydroxylation of the clay minerals during ashing at 700 to 750 C. By using a combination of several physicochemical methods, different successive stages of dehydroxylation, structural consolidation, and recrystallisation of illite, montmorillonite and hectorite upon thermal treatment to 1300 C were investigated. Dehydroxylation of the clay minerals occurred between 450 and 750 C, the X-ray crysdallinity of illite and montmorillonite remaining until 800 C. Hectorite gradually recrystallises to enstatite at temperatures above 700°C. At 900 C the crystalline structure of all three clay minerals had totally collapsed. Solid state reactions occurred above 900 C producing such phases as spinel, hematite, enstatite, cristobalite and mullite. Illite and montmorillonite started to melt between 1200 and 1300°C, producing a silicate glass that contained Fe(3+) and Fe(2+) ions. Ortho-pnstatite, clino-enstatite and proto-enstatite were identified in the thermal products of hectorite, their relative proportions varying with temperature. Protoenstatite was stabilised with respect to metastable clinoenstatite upon cooling from 12000 C by the presence of exchanged transition metal cations. Solid state Nuclear Magnetic Resonance spectroscopy of thermally treated transition metal exchanged hectorite indicated the levels at which paramagnetic cations could be loaded on to the clay before spectral resolution is significantly diminished.
Resumo:
The main objective of this work was to examlne the various stages of the production of industrial laminates based on phenol-formaldehyde resins, with a view of suggesting ways of improving the process economics and/or the physical properties of the final product. Aspects of impregnation, drying, and lamination were investigated. The resins used in all experiments were ammonia-catalysed. Work was concentrated on the lamination stage since this is a labour intensive activity. Paper-phenolic lay-ups were characterised in terms of the temperatures experienced during cure, and a shorter cure-cycle is proposed, utilising the exothermic heat produced during pressing of 25.5 mm thick lay-ups. Significant savings in production costs and improvements in some of the physical properties have been achieved. In particular, water absorption has been reduced by 43-61%. Work on the drying stage has shown that rapid heating of the wet impregnated substrate results in resin solids losses. Drying at lower temperatures by reducing the driving force leads to more resin (up to 6.5%) being retained by the prepregs and therefore more effective use of an expensive raw material. The impregnation work has indicated that residence times above 6 seconds in the varnish bath enhance the insulation resistance of the final product, possibly due to improved resin distribution and reduction in water absorption. In addition, a novel process which involves production of laminates by in situ polymerisation of the phenolic resin on the substrate has been examined. Such a process would eliminate the solvent recovery plant - a necessary stage in current industrial processes. In situ polymerisation has been shown to be chemically feasible.