21 resultados para Ocular parameters
em Aston University Research Archive
Resumo:
Purpose: Optometrists are becoming more integrally involved in the diagnosis of and care for glaucoma patients in the UK. The correlation of apparent change in non contact tonometry (NCT) IOP measurement and change in other ocular parameters such as refractive error, corneal curvature, corneal thickness and treatment zone size (data available to optometrists after LASIK) would facilitate care of these patients. Setting: A UK Laser Eye Clinic. Methods: This is a retrospective study study of 200 sequential eyes with myopia with or without astigmatism which underwent LASIK using a Hansatome and an Alcon LADARvision 4000 excimer laser. Refraction keratometry, pachymetry and NCT IOP mesurements were taken before treatmebnt and agian 3 months after treatment. The relationship between these variables anfd teh treatment zones were studied using stepwise multiple regression analysis. Results: There was a mean difference of 5.54mmHg comnparing pre and postoperative NCT IOP. IOP change correlates with refractive error change (P < 0.001), preoperative corneal thickness (P < 0.001) and treatment zone size (P = 0.047). Preoperative corneal thickness correlates with preoperative IOP (P < 0.001) and postoperative IOP (P < 0.001). Using these correlations, the measured difference in NCT IIOP can be predicted preoperatively or postoperatively using derived equations.Conclusion: There is a significant reduction in measured NCT IOP after LASIK. The amount of reduction can be calculated using data acquired by optometrists. This is helpful for opthalmologists and optometrists who co-manage glaucoma patients who have had LASIK or with glaucoma pateints who are consideraing having LASIK.
Resumo:
The study investigated the central and peripheral corneal characteristics of groups of subjects from 20 to 90 years of age to assist the understanding of ageing changes in the cornea, and to see whether relationships between ocular parameters were revealed. After age 45 the corneal horizontal radius of curvature gradually decreased with age. This trend was shown by the Aston University subjects (group B). The effect was very significant for the hospital patients undergoing biometry before cataract extraction operation (group D). Vertical radius of curvature showed a slight decrease with age after age 45, but similar to corneal eccentricity, this showed no significant age effect. Corneal astigmatism progressed from with the rule towards against the rule, particularly after age 60. The shift seemed mainly due to the decreasing horizontal corneal curvature. In biometry no significant age relation was found for axial length, but a significant relation was found between curvature and axial length in the larger group D. Lens thickness showed a very significant relation to age and to axial length, but no significant relation to corneal curvature. Anterior chamber depth showed a very significant relation to age, lens thickness and axial length, but no significant relation to corneal curvature. A significant age effect was found for corneal thickness decreasing with age for the central, nasal and temporal regions of the right eye. Analysis of the biometry results indicated the influence of two major factors. Firstly, the natural growth of the eye in youth, leading to greater values of axial length, radius of corneal curvature, lens thickness and anterior chamber depth. Secondly, the typical ageing changes where the increasing lens thickness caused a reduction in anterior chamber depth. The decrease in corneal thickness with age shown in some corneal regions may be a sign of ageing changes in the tissue proteins and hydration balance.
Resumo:
Purpose: Soft contact lenses for continuous wear require the use of cleaning regimes which utilise hydrogen peroxide systems or multipurpose cleaning solutions (MPS). The compositions of MPS are becoming increasingly complex and often include disinfectants, cleaning agents, preservatives, wetting agents, demulcents, chelating and buffering agents. Recent research on solution–lens interactions has focused on specific ocular parameters such as corneal staining. However the effect of a solution on the lens, particularly silicone hydrogel lenses, itself has received less attention. The purpose of this work was to establish and understand the effects that care solutions have on selected bulk and surface material properties. Methods: Selected bulk and surface properties of each material (etafilcon A, vifilcon A, balafilcon A, senofilcon A, lotrafilcon A and lotrafilcon B, galyfilcon A) were measured after a 24 h soak in a variety of care solutions. Additionally the lenses were soaked for 24 h in hyperosmolar (680 mOsm L-1) and hyposmolar (170 mOsm L-1) PBS. A bulk property parameter the total diameter (TD) was measured using an Optimec contact lens analyser. The surface property related CoF of soaked lenses was measured on a nano-tribometer with conditions of load 30 mN, at a distance of 20 mm and speed 30 mm/min. Results: In terms of bulk properties, change is related to the EWC of the lens, the higher the EWC of the lens the greater the TD changes. Silicone hydrogel lenses have EWCs of <47% and little or no TD changes were observed; lotrafilcon A exhibited no change irrespective of the cleaning solution. Conventional contact lenses have higher EWCs (58% for etafilcon A and 55% for vifilcon A) and the TD was seen to change to a greater extent, for example the etafilcon A material in ReNu MPS had an increase to 14.45± 0.07 mm from the cited 14.2 mm. Other lenses increased or decreased in TD depending on the solution used. The osmolarity of the solution although important is not the only factor governing change in the TD, for example soaking senofilcon A in hyperosmolar PBS (680 mOsm L-1) for 24 h increased the TD of the lens (+0.25 ± 0.07 mm), however when the same lens type was soaked for 24 h in a MPS with a lower osmolarity there was a similar effect. Biotribology measurements demonstrated that some solution–lens combinations can reduce the CoF by 55%, when compared with biotribology with the native packing solution. An increase in the CoF was observed for other solution–lens combinations. Conclusions: There is a dramatic difference in bulk and surface performance of specific lens materials with particular care solutions. Individual components of the care solutions have effects on the bulk and surface properties of contact lenses. The affects are not as great with the silicone hydrogel as compared with conventional hydrogels.
Resumo:
Accommodating Intraocular Lenses (IOLs), multifocal IOLs (MIOLs) and toric IOLs are designed to provide a greater level of spectacle independency post cataract surgery. All of these IOLs are reliant on the accurate calculation of intraocular lens power determined through reliable ocular biometry. A standardised defocus area metric and reading performance index metric were devised for the evaluation of the range of focus and the reading ability of subjects implanted with presbyopic correcting IOLs. The range of clear vision after implantation of an MIOL is extended by a second focal point; however, this results in the prevalence of dysphotopsia. A bespoke halometer was designed and validated to assess this photopic phenomenon. There is a lack of standardisation in the methods used for determining IOL orientation and thus rotation. A repeatable, objective method was developed to allow the accurate assessment of IOL rotation, which was used to determine the rotational and positional stability of a closed loop haptic IOL. A new commercially available biometry device was validated for use with subjects prior to cataract surgery. The optical low coherence reflectometry instrument proved to be a valid method for assessing ocular biometry and covered a wider range of ocular parameters in comparison with previous instruments. The advantages of MIOLs were shown to include an extended range of clear vision translating into greater reading ability. However, an increased prevalence of dysphotopsia was shown with a bespoke halometer, which was dependent on the MIOL optic design. Implantation of a single optic accommodating IOL did not improve reading ability but achieved high subjective ratings of near vision. The closed-loop haptic IOL displayed excellent rotational stability in the late period but relatively poor rotational stability in the early period post implantation. The orientation error was compounded by the high frequency of positional misalignment leading to an extensive overall misalignment of the IOL. This thesis demonstrates the functionality of new IOL lens designs and the importance of standardised testing methods, thus providing a greater understanding of the consequences of implanting these IOLs. Consequently, the findings of the thesis will influence future designs of IOLs and testing methods.
Resumo:
The importance of vascular risk factors in various age-related pathologies has been extensively researched. Nevertheless, the haemodynamic disturbance occurring in various ocular and systemic vascular beds to impact upon ocular function remained largely unknown. The purpose of the following studies was to explore the presence and impact of both ocular and systemic vascular dysregulation as well as biochemical vascular risk factors in healthy elderly individuals and patients with age-related macular degeneration. Furthermore, the possible role was played by circulatory oxidative stress and its relationship with endothelial dysfunction at both ocular and systemic levels has also been investigated. There were four principal sections to the present work: 1. To assess the relationship between ocular and systemic anti-oxidative defence in healthy individuals The principal findings of this work were: -It has been shown that MPOD significantly and positively related with circulatory GSH levels. 2. To investigate macro- and microcirculation and oxidative stress in early AMD patients without overt systemic disease The principal findings of this work were: -AMD patients exhibit abnormal macrocirculation compared to the controls. -Blood GSSG level was significantly higher in early AMD patients than controls. -AMD patients showed abnormal microcirculation at retinal level compared. -In early AMD patients, retinal venous RT positively correlated with blood GSSG levels. 3. To assess the relationship between ocular vascular function and circulatory markers of endothelial dysfunction and CVD risk The principal findings of this work were: -Age had a positive effect on ET-1, vWF and slope of retinal arterial constriction in otherwise healthy individuals. -Even in otherwise healthy individuals, retinal arterial vascular function showed a significant correlation with circulatory markers of endothelial dysfunction and CVD risk. 4. To assess age-related changes in ANS and vascular function, and their relationship to retinal vascular function parameters The principal findings of this work were: -Elderly individuals demonstrated abnormal circadian changes of PSNS activity compared to middle-aged group. -Elderly groups showed higher ET-1 and vWF level as well as C-IMT and AIx, and also impaired retinal vascular function compared to the middle-aged group. -In the elderly group, impaired retinal vascular function significantly correlated with the dysregulation of PSNS activity.
Resumo:
Purpose To evaluate the effect of latanoprost 0.005% on the optic nerve head (ONH) and retinal circulation of newly diagnosed and previously untreated primary open-angle glaucoma (POAG) patients. Methods Twenty-two newly diagnosed and previously untreated POAG patients (mean age±SD: 68.38±11.92 years) were included in this longitudinal open-label study. Patients were treated with latanoprost 0.005% once a day. Intraocular pressure (IOP), systemic blood pressure (BP), mean ocular perfusion pressure (MOPP), and ocular perfusion parameters ‘volume’, ‘velocity’, and ‘flow’ measured at the optic nerve head (ONH) and retina by means of Heidelberg Retina Flowmeter system were evaluated during a 6-month follow-up period. Results Treatment with latanoprost 0.005% resulted in a significant decrease in IOP (P<0.0001) and increase in MOPP (P<0.0001). After correcting for changes in MOPP, the blood velocity measured at the ONH level was significantly higher after 6 months of treatment than at baseline (P=0.0310). In addition, blood volume and flow measured at the peripapillary retina level improved after 3 and 6 months of treatment (P=0.0170; P=0.0260, and P=0.0170; P=0.0240 respectively). Conclusion Previously untreated POAG patients exhibit reduced IOP, increased MOPP and improved ocular perfusion at the ONH and retina levels when treated with Latanoprost 0.005%. These effects could be beneficial for glaucoma patients suffering from ocular vascular dysregulation.
Resumo:
PURPOSE: To evaluate the relationship between ocular perfusion pressure and color Doppler measurements in patients with glaucoma. MATERIALS AND METHODS: Twenty patients with primary open-angle glaucoma with visual field deterioration in spite of an intraocular pressure lowered below 21 mm Hg, 20 age-matched patients with glaucoma with stable visual fields, and 20 age-matched healthy controls were recruited. After a 20-minute rest in a supine position, intraocular pressure and color Doppler measurements parameters of the ophthalmic artery and the central retinal artery were obtained. Correlations between mean ocular perfusion pressure and color Doppler measurements parameters were determined. RESULTS: Patients with glaucoma showed a higher intraocular pressure (P <.0008) and a lower mean ocular perfusion pressure (P <.0045) compared with healthy subjects. Patients with deteriorating glaucoma showed a lower mean blood pressure (P =.033) and a lower end diastolic velocity in the central retinal artery (P =.0093) compared with normals. Mean ocular perfusion pressure correlated positively with end diastolic velocity in the ophthalmic artery (R = 0.66, P =.002) and central retinal artery (R = 0.74, P <.0001) and negatively with resistivity index in the ophthalmic artery (R = -0.70, P =.001) and central retinal artery (R = -0.62, P =.003) in patients with deteriorating glaucoma. Such correlations did not occur in patients with glaucoma with stable visual fields or in normal subjects. The correlations were statistically significantly different between the study groups (parallelism of regression lines in an analysis of covariance model) for end diastolic velocity (P =.001) and resistivity index (P =.0001) in the ophthalmic artery, as well as for end diastolic velocity (P =.0009) and resistivity index (P =. 001) in the central retinal artery. CONCLUSIONS: The present findings suggest that alterations in ocular blood flow regulation may contribute to the progression in glaucomatous damage.
Resumo:
The principal theme of this thesis is the in vivo examination of ocular morphological changes during phakic accommodation, with particular attention paid to the ciliary muscle and crystalline lens. The investigations detailed involved the application of high-resolution imaging techniques to facilitate the acquisition of new data to assist in the clarification of aspects of the accommodative system that were poorly understood. A clinical evaluation of the newly available Grand Seiko Auto Ref/ Keratometer WAM-5500 optometer was undertaken to assess its value in the field of accommodation research. The device was found to be accurate and repeatable compared to subjective refraction, and has the added advantage of allowing dynamic data collection at a frequency of around 5 Hz. All of the subsequent investigations applied the WAM-5500 for determination of refractive error and objective accommodative responses. Anterior segment optical coherence tomography (AS-OCT) based studies examined the morphology and contractile response of youthful and ageing ciliary muscle. Nasal versus temporal asymmetry was identified, with the temporal aspect being both thicker and demonstrating a greater contractile response. The ciliary muscle was longer in terms of both its anterior (r = 0.49, P <0.001) and overall length (r = 0.45, P = 0.02) characteristics, in myopes. The myopic ciliary muscle does not appear to be merely stretched during axial elongation, as no significant relationship between thickness and refractive error was identified. The main contractile responses observed were a thickening of the anterior region and a shortening of the muscle, particularly anteriorly. Similar patterns of response were observed in subjects aged up to 70 years, supporting a lensocentric theory of presbyopia development. Following the discovery of nasal/ temporal asymmetry in ciliary muscle morphology and response, an investigation was conducted to explore whether the regional variations in muscle contractility impacted on lens stability during accommodation. A bespoke programme was developed to analyse AS-OCT images and determine whether lens tilt and decentration varied between the relaxed and accommodated states. No significant accommodative difference in these parameters was identified, implying that any changes in lens stability with accommodation are very slight, as a possible consequence of vitreous support. Novel three-dimensional magnetic resonance imaging (MRI) and analysis techniques were used to investigate changes in lens morphology and ocular conformation during accommodation. An accommodative reduction in lens equatorial diameter provides further evidence to support the Helmholtzian mechanism of accommodation, whilst the observed increase in lens volume challenges the widespread assertion that this structure is incompressible due to its high water content. Wholeeye MRI indicated that the volume of the vitreous chamber remains constant during accommodation. No significant changes in ocular conformation were detected using MRI. The investigations detailed provide further insight into the mechanisms of accommodation and presbyopia, and represent a platform for future work in this field.
Resumo:
The ability to measure ocular surface temperature (OST) with thermal imaging offers potential insight into ocular physiology that has been acknowledged in the literature. The TH7102MX thermo-camera (NEC San-ei, Japan) continuously records dynamic information about OST without sacrificing spatial resolution. Using purpose-designed image analysis software, it was possible to select and quantify the principal components of absolute temperature values and the magnitude plus rate of temperature change that followed blinking. The techniques was examined for repeatability, reproducibility and the effects of extrinsic factors: a suitable experimental protocol was thus developed. The precise source of the measured thermal radiation has previously been subject toe dispute: in this thesis, the results of a study examining the relationships between physical parameters of the anterior eye and OST, confirmed a principal role for the tear film in OST. The dynamic changes in OST were studied in a large group of young subjects: quantifying the post-blink changes in temperature with time also established a role for tear flow dynamics in OST. Using dynamic thermography, the effects of hydrogel contact lens wear on OST were investigated: a model eye for in vivo work, and both neophyte and adapted contact lens wearers for in vivo studies. Significantly greater OST was observed in contact lens wearers, particularly with silicone hydrogel lenses compared to etafilcon A, and tended to be greatest when lenses had been worn continuously. This finding is important to understanding the ocular response to contact lens wear. In a group of normal subjects, dynamic thermography appeared to measure the ocular response to the application of artificial tear drops: this may prove to be a significant research and clinical tool.
Resumo:
Previous research has indicated that schematic eyes incorporating aspheric surfaces but lacking gradient index are unable to model ocular spherical aberration and peripheral astigmatism simultaneously. This limits their use as wide-angle schematic eyes. This thesis challenges this assumption by investigating the flexibility of schematic eyes comprising aspheric optical surfaces and homogeneous optical media. The full variation of ocular component dimensions found in human eyes was established from the literature. Schematic eye parameter variants were limited to these dimensions. The levels of spherical aberration and peripheral astigmatism modelled by these schematic eyes were compared to the range of measured levels. These were also established from the literature. To simplify comparison of modelled and measured data, single value parameters were introduced; the spherical aberration function (SAF), and peripheral astigmatism function (PAF). Some ocular components variations produced a wide range of aberrations without exceeding the limits of human ocular components. The effect of ocular component variations on coma was also investigated, but no comparison could be made as no empirical data exists. It was demonstrated that by combined manipulation of a number of parameters in the schematic eyes it was possible to model all levels of ocular spherical aberration and peripheral astigmatism. However, the unique parameters of a human eye could not be obtained in this way, as a number of models could be used to produce the same spherical aberration and peripheral astigmatism, while giving very different coma levels. It was concluded that these schematic eyes are flexible enough to model the monochromatic aberrations tested, the absence of gradient index being compensated for by altering the asphericity of one or more surfaces.
Resumo:
Automated perimetry has made viable a rapid threshold examination of the visual field and has reinforced the role of perimetry in the diagnostic procedure. The aim of this study was twofold: to isolate the influence of certain extraneous factors on the sensitivity gradient, since these might limit the early detection and accurate monitoring of visual field loss and to investigate the efficacy of certain novel combinations of stimulus parameters in the detection of early visual field loss. The work was carried out with particular reference to glaucoma and to ocular hypertension. The effects of media opacities on the visual field were assessed by forward intraocular light scatter (n= 15) and were found to mask diffuse glaucomatous visual field loss and underestimate focal loss. Correction of the visual field indices for the effects of forward intraocular light scatter (n= 26) showed the focal losses to be, in reality, unaffected. Measurements of back scatter underestimated forward intraocular light scatter (n= 60) and the resultant depression of the visual field. Perimetric sensitivity improved with patient learning (n= 25) and exhibited eccentricity- and depth-dependency effects whereby improvements in sensitivity were greatest for peripheral areas of the field and for those areas which initially demonstrated the lowest sensitivity. The effects of practice were retained over several months (n= 16). Perimetric sensitivity decreased during prolonged examination due to fatigue effects (n&61 19); these demonstrated a similar eccentricity-dependency, being greatest for eccentricities beyond 30o. Mean sensitivities over the range of adaptation levels employed obeyed the Weber-Fechner law (n= 10) and, as would be expected, were independent of pupil size. No relationship was found between short-term fluctuation and adaptation level. Detection of diffuse glaucomatous visual field loss was facilitated using a size III stimulus of duration 200msec at an adaptation level of 31.5asb, compared with a size III stimulus of duration 100msec at an adaptation level of 4asb (n= 20). In a pilot study (n= 10), temporal summation was found to be higher in glaucomatous patients compared with age-matched controls, although the difference was not statistically significant.
Resumo:
The work utilising a new material for contact lenses has fallen into three parts: Physioloeical considerations: Since the cornea is devoid of blood vessels, its oxygen is derived from the atmosphere. Early hydrophilic gel contact lenses interrupted the flow of oxygen and corneal insult resulted. Three techniques of fenestration were tried to overcome this problem. High speed drilling with 0.1 mm diameter twist drills. was found to be mechanically successful, but under clinical conditions mucous blockage of the fenestrations occurred. An investigation was made into the amount of oxygen arriving at the corneal interface; related to gel lens thickness. The results indicated an improvement in corneal oxygen as lens thickness was reduced. The mechanism is thought to be a form of mechanical pump. A series of clinical studies con:firmed the experimental work; the use of thin lenses removing the symptoms of corneal hypoxia. Design: The parameters of lens back curvature. lens thickness and lens diameter have been isolated and related to three criteria of vision (a) Visual acuity. (b) Visual stability and (c) Induced astigmatism. From the results achieved a revised and basically successful design of lens has been developed. Comparative study: The developed form of lens was compared with traditional lenses in a controlled survey. Twelve factors were assessed over a twenty week period of wear using a total of eighty four patients. The results of this study indicate that whilst the expected changes were noted with the traditional lens wearers, gel lens wearers showed no discernible change in any of the factors measured. ldth the exception of' one parameter. In addition to a description of' the completed l'iork. further investigations are ·sug~ested l'lhich. it is hoped. l'iould further improve the optical performance of gel lenses.
Resumo:
PURPOSE. To examine the relation between ocular surface temperature (OST) assessed by dynamic thermal imaging and physical parameters of the anterior eye in normal subjects. METHODS. Dynamic ocular thermography (ThermoTracer 7102MX) was used to record body temperature and continuous ocular surface temperature for 8 s after a blink in the right eyes of 25 subjects. Corneal thickness, corneal curvature, and anterior chamber depth (ACD) were assessed using Orbscan II; noninvasive tear break-up time (NIBUT) was assessed using the tearscope; slit lamp photography was used to record tear meniscus height (TMH) and objective bulbar redness. RESULTS. Initial OST after a blink was significantly correlated only with body temperature (r = 0.80, p < 0.0005), NIBUT (r = -0.68, p < 0.005) and corneal curvature (r = -0.40, p = 0.05). A regression model containing all the variables accounted for 70% (p = 0.002) of the variance in OST, of which NIBUT (29%, p = 0.004), and body temperature (18%, p = 0.005) contributed significantly. CONCLUSIONS. The results support previous theoretical models that OST radiation is principally related to the tear film; and demonstrate that it is less related to other characteristics such as corneal thickness, corneal curvature, and anterior chamber depth. © 2007 American Academy of Optometry.
Resumo:
Purpose: To quantify the end-of-day silicone-hydrogel daily disposable contact lens fit and its influence of on ocular comfort, physiology and lens wettability. Methods: Thirty-nine subjects (22.1. ±. 3.5 years) were randomised to wear each of 3 silicone-hydrogel daily-disposable contact lenses (narafilcon A, delefilcon A and filcon II 3), bilaterally, for one week. Lens fit was assessed objectively using a digital video slit-lamp at 8, 12 and 16. h after lens insertion. Hyperaemia, non-invasive tear break-up time, tear meniscus height and comfort were also evaluated at these timepoints, while corneal and conjunctival staining were assessed on lens removal. Results: Lens fit assessments were not different between brands (P > 0.05), with the exception of the movement at blink where narafilcon A was more mobile. Overall, lag reduced but push-up speed increased from 8 to 12. h (P <. 0.05), but remained stable from 12 to 16. h (P > 0.05). Movement-on-blink was unaffected by wear-time (F = 0.403, P = 0.670). A more mobile lens fit with one brand did not indicate that person would have a more mobile fit with another brand (r = -0.06 to 0.63). Lens fit was not correlated with comfort, ocular physiology or lens wettability (P > 0.01). Conclusions: Among the lenses tested, objective lens fit changed between 8. h and 12. h of lens wear. The weak correlation in individual lens fit between brands indicates that fit is dependent on more than ocular shape. Consequently, substitution of a different lens brand with similar parameters will not necessarily provide comparable lens fit.
Resumo:
The poor retention and efficacy of instilled drops as a means of delivering drugs to the ophthalmic environment is well-recognised. The potential value of contact lenses as a means of ophthalmic drug delivery, and consequent improvement of pre-corneal retention is one obvious route to the development of a more effective ocular delivery system. Furthermore, the increasing availability and clinical use of daily disposable contact lenses provides the platform for the development of viable single-day use drug delivery devices based on existing materials and lenses. In order to provide a basis for the effective design of such devices, a systematic understanding of the factors affecting the interaction of individual drugs with the lens matrix is required. Because a large number of potential structural variables are involved, it is necessary to achieve some rationalisation of the parameters and physicochemical properties (such as molecular weight, charge, partition coefficients) that influence drug interactions. Ophthalmic dyes and structurally related compounds based on the same core structure were used to investigate these various factors and the way in which they can be used in concert to design effective release systems for structurally different drugs. Initial studies of passive diffusional release form a necessary precursor to the investigation of the features of the ocular environment that over-ride this simple behaviour. Commercially available contact lenses of differing structural classifications were used to study factors affecting the uptake of the surrogate actives and their release under 'passive' conditions. The interaction between active and lens material shows considerable and complex structure dependence, which is not simply related to equilibrium water content. The structure of the polymer matrix itself was found to have the dominant controlling influence on active uptake; hydrophobic interaction with the ophthalmic dye playing a major role. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.