13 resultados para Ocean Surface Waves
em Aston University Research Archive
Resumo:
Eigenmodes and dispersion curves in different configurations of synthetic photonic lattices are studied numerically. Eigenmodes localized on borders between areas with different optical potential are found. Stability of these eigenmodes against potential disturbances of different type is studied.
Resumo:
The Stokes perturbative solution of the nonlinear (boundary value dependent) surface gravity wave problem is known to provide results of reasonable accuracy to engineers in estimating the phase speed and amplitudes of such nonlinear waves. The weakling in this structure though is the presence of aperiodic “secular variation” in the solution that does not agree with the known periodic propagation of surface waves. This has historically necessitated increasingly higher-ordered (perturbative) approximations in the representation of the velocity profile. The present article ameliorates this long-standing theoretical insufficiency by invoking a compact exact n-ordered solution in the asymptotic infinite depth limit, primarily based on a representation structured around the third-ordered perturbative solution, that leads to a seamless extension to higher-order (e.g., fifth-order) forms existing in the literature. The result from this study is expected to improve phenomenological engineering estimates, now that any desired higher-ordered expansion may be compacted within the same representation, but without any aperiodicity in the spectral pattern of the wave guides.
Resumo:
This report gives an overview of the work being carried out, as part of the NEUROSAT project, in the Neural Computing Research Group at Aston University. The aim is to give a general review of the work and methods, with reference to other documents which provide the detail. The document is ongoing and will be updated as parts of the project are completed. Thus some of the references are not yet present. In the broadest sense, the Aston part of NEUROSAT is about using neural networks (and other advanced statistical techniques) to extract wind vectors from satellite measurements of ocean surface radar backscatter. The work involves several phases, which are outlined below. A brief summary of the theory and application of satellite scatterometers forms the first section. The next section deals with the forward modelling of the scatterometer data, after which the inverse problem is addressed. Dealiasing (or disambiguation) is discussed, together with proposed solutions. Finally a holistic framework is presented in which the problem can be solved.
Resumo:
Mixture Density Networks are a principled method to model conditional probability density functions which are non-Gaussian. This is achieved by modelling the conditional distribution for each pattern with a Gaussian Mixture Model for which the parameters are generated by a neural network. This thesis presents a novel method to introduce regularisation in this context for the special case where the mean and variance of the spherical Gaussian Kernels in the mixtures are fixed to predetermined values. Guidelines for how these parameters can be initialised are given, and it is shown how to apply the evidence framework to mixture density networks to achieve regularisation. This also provides an objective stopping criteria that can replace the `early stopping' methods that have previously been used. If the neural network used is an RBF network with fixed centres this opens up new opportunities for improved initialisation of the network weights, which are exploited to start training relatively close to the optimum. The new method is demonstrated on two data sets. The first is a simple synthetic data set while the second is a real life data set, namely satellite scatterometer data used to infer the wind speed and wind direction near the ocean surface. For both data sets the regularisation method performs well in comparison with earlier published results. Ideas on how the constraint on the kernels may be relaxed to allow fully adaptable kernels are presented.
Resumo:
The ERS-1 Satellite was launched in July 1991 by the European Space Agency into a polar orbit at about km800, carrying a C-band scatterometer. A scatterometer measures the amount of radar back scatter generated by small ripples on the ocean surface induced by instantaneous local winds. Operational methods that extract wind vectors from satellite scatterometer data are based on the local inversion of a forward model, mapping scatterometer observations to wind vectors, by the minimisation of a cost function in the scatterometer measurement space.par This report uses mixture density networks, a principled method for modelling conditional probability density functions, to model the joint probability distribution of the wind vectors given the satellite scatterometer measurements in a single cell (the `inverse' problem). The complexity of the mapping and the structure of the conditional probability density function are investigated by varying the number of units in the hidden layer of the multi-layer perceptron and the number of kernels in the Gaussian mixture model of the mixture density network respectively. The optimal model for networks trained per trace has twenty hidden units and four kernels. Further investigation shows that models trained with incidence angle as an input have results comparable to those models trained by trace. A hybrid mixture density network that incorporates geophysical knowledge of the problem confirms other results that the conditional probability distribution is dominantly bimodal.par The wind retrieval results improve on previous work at Aston, but do not match other neural network techniques that use spatial information in the inputs, which is to be expected given the ambiguity of the inverse problem. Current work uses the local inverse model for autonomous ambiguity removal in a principled Bayesian framework. Future directions in which these models may be improved are given.
Resumo:
Current methods for retrieving near surface winds from scatterometer observations over the ocean surface require a foward sensor model which maps the wind vector to the measured backscatter. This paper develops a hybrid neural network forward model, which retains the physical understanding embodied in ¸mod, but incorporates greater flexibility, allowing a better fit to the observations. By introducing a separate model for the mid-beam and using a common model for the fore- and aft-beams, we show a significant improvement in local wind vector retrieval. The hybrid model also fits the scatterometer observations more closely. The model is trained in a Bayesian framework, accounting for the noise on the wind vector inputs. We show that adding more high wind speed observations in the training set improves wind vector retrieval at high wind speeds without compromising performance at medium or low wind speeds.
Resumo:
We study online approximations to Gaussian process models for spatially distributed systems. We apply our method to the prediction of wind fields over the ocean surface from scatterometer data. Our approach combines a sequential update of a Gaussian approximation to the posterior with a sparse representation that allows to treat problems with a large number of observations.
Resumo:
Mixture Density Networks are a principled method to model conditional probability density functions which are non-Gaussian. This is achieved by modelling the conditional distribution for each pattern with a Gaussian Mixture Model for which the parameters are generated by a neural network. This thesis presents a novel method to introduce regularisation in this context for the special case where the mean and variance of the spherical Gaussian Kernels in the mixtures are fixed to predetermined values. Guidelines for how these parameters can be initialised are given, and it is shown how to apply the evidence framework to mixture density networks to achieve regularisation. This also provides an objective stopping criteria that can replace the `early stopping' methods that have previously been used. If the neural network used is an RBF network with fixed centres this opens up new opportunities for improved initialisation of the network weights, which are exploited to start training relatively close to the optimum. The new method is demonstrated on two data sets. The first is a simple synthetic data set while the second is a real life data set, namely satellite scatterometer data used to infer the wind speed and wind direction near the ocean surface. For both data sets the regularisation method performs well in comparison with earlier published results. Ideas on how the constraint on the kernels may be relaxed to allow fully adaptable kernels are presented.
Resumo:
Not withstanding the high demand of metal powder for automotive and High Tech applications, there are still many unclear aspects of the production process. Only recentlyhas supercomputer performance made possible numerical investigation of such phenomena. This thesis focuses on the modelling aspects of primary and secondary atomization. Initially two-dimensional analysis is carried out to investigate the influence of flow parameters (reservoir pressure and gas temperature principally) and nozzle geometry on final powder yielding. Among the different types, close coupled atomizers have the best performance in terms of cost and narrow size distribution. An isentropic contoured nozzle is introduced to minimize the gas flow losses through shock cells: the results demonstrate that it outperformed the standard converging-diverging slit nozzle. Furthermore the utilization of hot gas gave a promising outcome: the powder size distribution is narrowed and the gas consumption reduced. In the second part of the thesis, the interaction of liquid metal and high speed gas near the feeding tube exit was studied. Both axisymmetric andnon-axisymmetric geometries were simulated using a 3D approach. The filming mechanism was detected only for very small metal flow rates (typically obtained in laboratory scale atomizers). When the melt flow increased, the liquid core overtook the adverse gas flow and entered in the high speed wake directly: in this case the disruption isdriven by sinusoidal surface waves. The process is characterized by fluctuating values of liquid volumes entering the domain that are monitored only as a time average rate: it is far from industrial robustness and capability concept. The non-axisymmetric geometry promoted the splitting of the initial stream into four cores, smaller in diameter and easier to atomize. Finally a new atomization design based on the lesson learned from previous cases simulation is presented.
Resumo:
Satellite-borne scatterometers are used to measure backscattered micro-wave radiation from the ocean surface. This data may be used to infer surface wind vectors where no direct measurements exist. Inherent in this data are outliers owing to aberrations on the water surface and measurement errors within the equipment. We present two techniques for identifying outliers using neural networks; the outliers may then be removed to improve models derived from the data. Firstly the generative topographic mapping (GTM) is used to create a probability density model; data with low probability under the model may be classed as outliers. In the second part of the paper, a sensor model with input-dependent noise is used and outliers are identified based on their probability under this model. GTM was successfully modified to incorporate prior knowledge of the shape of the observation manifold; however, GTM could not learn the double skinned nature of the observation manifold. To learn this double skinned manifold necessitated the use of a sensor model which imposes strong constraints on the mapping. The results using GTM with a fixed noise level suggested the noise level may vary as a function of wind speed. This was confirmed by experiments using a sensor model with input-dependent noise, where the variation in noise is most sensitive to the wind speed input. Both models successfully identified gross outliers with the largest differences between models occurring at low wind speeds. © 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Current methods for retrieving near-surface winds from scatterometer observations over the ocean surface require a forward sensor model which maps the wind vector to the measured backscatter. This paper develops a hybrid neural network forward model, which retains the physical understanding embodied in CMOD4, but incorporates greater flexibility, allowing a better fit to the observations. By introducing a separate model for the midbeam and using a common model for the fore and aft beams, we show a significant improvement in local wind vector retrieval. The hybrid model also fits the scatterometer observations more closely. The model is trained in a Bayesian framework, accounting for the noise on the wind vector inputs. We show that adding more high wind speed observations in the training set improves wind vector retrieval at high wind speeds without compromising performance at medium or low wind speeds. Copyright 2001 by the American Geophysical Union.
Resumo:
The ERS-1 Satellite was launched in July 1991 by the European Space Agency into a polar orbit at about 800 km, carrying a C-band scatterometer. A scatterometer measures the amount of backscatter microwave radiation reflected by small ripples on the ocean surface induced by sea-surface winds, and so provides instantaneous snap-shots of wind flow over large areas of the ocean surface, known as wind fields. Inherent in the physics of the observation process is an ambiguity in wind direction; the scatterometer cannot distinguish if the wind is blowing toward or away from the sensor device. This ambiguity implies that there is a one-to-many mapping between scatterometer data and wind direction. Current operational methods for wind field retrieval are based on the retrieval of wind vectors from satellite scatterometer data, followed by a disambiguation and filtering process that is reliant on numerical weather prediction models. The wind vectors are retrieved by the local inversion of a forward model, mapping scatterometer observations to wind vectors, and minimising a cost function in scatterometer measurement space. This thesis applies a pragmatic Bayesian solution to the problem. The likelihood is a combination of conditional probability distributions for the local wind vectors given the scatterometer data. The prior distribution is a vector Gaussian process that provides the geophysical consistency for the wind field. The wind vectors are retrieved directly from the scatterometer data by using mixture density networks, a principled method to model multi-modal conditional probability density functions. The complexity of the mapping and the structure of the conditional probability density function are investigated. A hybrid mixture density network, that incorporates the knowledge that the conditional probability distribution of the observation process is predominantly bi-modal, is developed. The optimal model, which generalises across a swathe of scatterometer readings, is better on key performance measures than the current operational model. Wind field retrieval is approached from three perspectives. The first is a non-autonomous method that confirms the validity of the model by retrieving the correct wind field 99% of the time from a test set of 575 wind fields. The second technique takes the maximum a posteriori probability wind field retrieved from the posterior distribution as the prediction. For the third technique, Markov Chain Monte Carlo (MCMC) techniques were employed to estimate the mass associated with significant modes of the posterior distribution, and make predictions based on the mode with the greatest mass associated with it. General methods for sampling from multi-modal distributions were benchmarked against a specific MCMC transition kernel designed for this problem. It was shown that the general methods were unsuitable for this application due to computational expense. On a test set of 100 wind fields the MAP estimate correctly retrieved 72 wind fields, whilst the sampling method correctly retrieved 73 wind fields.
Resumo:
A new approach is described herein, where neutron reflectivity measurements that probe changes in the density profile of thin films as they absorb material from the gas phase have been combined with a Love wave based gravimetric assay that measures the mass of absorbed material. This combination of techniques not only determines the spatial distribution of absorbed molecules, but also reveals the amount of void space within the thin film (a quantity that can be difficult to assess using neutron reflectivity measurements alone). The uptake of organic solvent vapours into spun cast films of polystyrene has been used as a model system with a view to this method having the potential for extension to the study of other systems. These could include, for example, humidity sensors, hydrogel swelling, biomolecule adsorption or transformations of electroactive and chemically reactive thin films. This is the first ever demonstration of combined neutron reflectivity and Love wave-based gravimetry and the experimental caveats, limitations and scope of the method are explored and discussed in detail.