17 resultados para OXIDATION CATALYSIS
em Aston University Research Archive
Resumo:
Ultrathin alumina monolayers grafted onto an ordered mesoporous SBA-15 silica framework afford a composite catalyst support with unique structural properties and surface chemistry. Palladium nanoparticles deposited onto Al-SBA-15 via wet impregnation exhibit the high dispersion and surface oxidation characteristic of pure aluminas, in conjunction with the high active site densities characteristic of thermally stable, high-area mesoporous silicas. This combination confers significant rate enhancements in the aerobic selective oxidation (selox) of cinnamyl alcohol over Pd/Al-SBA-15 compared to mesoporous alumina or silica supports. Operando, liquid-phase XAS highlights the interplay between dissolved oxygen and the oxidation state of palladium nanoparticles dispersed over Al-SBA-15 towards on-stream reduction: ambient pressures of flowing oxygen are sufficient to hinder palladium oxide reduction to metal, enabling a high selox activity to be maintained, whereas rapid PdO reduction and concomitant catalyst deactivation occurs under static oxygen. Selectivity to the desired cinnamaldehyde product mirrors these trends in activity, with flowing oxygen minimising CO cleavage of the cinnamyl alcohol reactant to trans-β-methylstyrene, and of cinnamaldehyde decarbonylation to styrene. © 2013 Elsevier B.V.
Resumo:
We studied the effects of the composition of impregnating solution and heat treatment conditions on the activity of catalytic systems for the low-temperature oxidation of CO obtained by the impregnation of Busofit carbon-fiber cloth with aqueous solutions of palladium, copper, and iron salts. The formation of an active phase in the synthesized catalysts at different stages of their preparation was examined with the use of differential thermal and thermogravimetric analyses, X-ray diffraction analysis, X-ray photoelectron spectroscopy, and elemental spectral analysis. The catalytic system prepared by the impregnation of electrochemically treated Busofit with the solutions of PdCl, FeCl, CuBr, and Cu(NO ) and activated under optimum conditions ensured 100% CO conversion under a respiratory regime at both low (0.03%) and high (0.5%) carbon monoxide contents of air. It was found that the activation of a catalytic system at elevated temperatures (170-180°C) leads to the conversion of Pd(II) into Pd(I), which was predominantly localized in a near-surface layer. The promoting action of copper nitrate consists in the formation of a crystalline phase of the rhombic atacamite CuCl(OH). The catalyst surface is finally formed under the conditions of a catalytic reaction, when a joint Pd(I)-Cu(I) active site is formed. © 2014 Pleiades Publishing, Ltd.
Resumo:
The selective aerobic oxidation of crotyl alcohol to crotonaldehyde was investigated by time-resolved synchronous DRIFTS/MS/XAS over silica and alumina supported Pd nanoparticles. Alcohol and oxygen reactant feeds were cycled through the catalyst bed while dynamic measurements of the palladium oxidation state, molecular adsorbates and evolved product distribution were made simultaneously on a sub-second timescale. Highly dispersed palladium nanoparticles remained in a partially oxidised state
Resumo:
The thermal evolution of titania-supported Au shell–Pd core bimetallic nanoparticles, prepared via colloidal routes, has been investigated by in situ XPS, DRIFTS, EXAFS and XRD and ex situ HRTEM. As-prepared nanoparticles are terminated by a thin (∼5 layer) Au shell, encapsulating approximately 20 nm diameter cuboctahedral palladium cores, with the ensemble stabilised by citrate ligands. The net gold composition was 40 atom%. Annealing in vacuo or under inert atmosphere rapidly pyrolyses the citrate ligands, but induces only limited Au/Pd intermixing and particle growth <300 °C. Higher temperatures promote more dramatic alloying, accompanied by significant sintering and surface roughening. These changes are mirrored by the nanoparticle catalysed liquid phase selective aerobic oxidation of crotyl alcohol to crotonaldehyde; palladium surface segregation enhances both activity and selectivity, with the most active surface alloy attainable containing ∼40 atom% Au.
Resumo:
The selective oxidation of crotyl alcohol to crotonaldehyde over ultrathin Au overlayers on Pd(1 1 1) and Au/Pd(1 1 1) surface alloys has been investigated by time-resolved X-ray photoelectron spectroscopy (XPS) and mass spectrometry. Pure gold is catalytically inert towards crotyl alcohol which undergoes reversible adsorption. In contrast, thermal processing of a 3.9 monolayer (ML) gold overlayer allows access to a range of AuPd surface alloy compositions, which are extremely selective towards crotonaldehyde production, and greatly reduce the extent of hydrocarbon decomposition and eventual carbon laydown compared with base Pd(1 1 1). XPS and CO titrations suggest that palladium-rich surface alloys offer the optimal balance between alcohol oxidative dehydrogenation activity while minimising competitive decomposition pathways, and that Pd monomers are not the active surface ensemble for such selox chemistry over AuPd alloys. Crown Copyright © 2008.
Resumo:
Catalytic systems containing palladium, copper, and iron compounds on carbon supports-kernel activated carbon and fibrous carbon materials (Karbopon and Busofit)-for the low-temperature oxidation of CO were synthesized. The effects of the nature of the support, the concentration and composition of the active component, and the conditions of preparation on the efficiency of the catalytic system were studied. The catalytic system based on Karbopon exhibited the highest activity: the conversion of carbon monoxide was 90% at room temperature and a reaction mixture (0.03% CO in air) space velocity of 10 000 h. It was found that the metals occurred in oxidized states in the course of operation: palladium mainly occurred as Pd, whereas copper and iron occurred as Cu and Fe, respectively. © 2008 MAIK Nauka.
Resumo:
Highly ordered mesoporous alumina was prepared via evaporation induced self assembly and was impregnated to afford a family of Pd/meso-Al2O3 catalysts for the aerobic selective oxidation (selox) of allylic alcohols under mild reaction conditions. CO chemisorption and XPS identify the presence of highly dispersed (0.9–2 nm) nanoparticles comprising heavily oxidised PdO surfaces, evidencing a strong palladium-alumina interaction. Surface PdO is confirmed as the catalytically active phase responsible for allylic alcohol selox, with initial rates for Pd/meso-Al2O3 far exceeding those achievable for palladium over either amorphous alumina or mesoporous silica supports. Pd/meso-Al2O3 is exceptionally active for the atom efficient selox of diverse allylic alcohols, with activity inversely proportional to alcohol mass.
Resumo:
The utility of a hierarchically ordered nanoporous SBA-15 architecture, comprising 270 nm macropores and 5 nm mesopores (MM-SBA-15), for the catalytic aerobic selective oxidation of sterically challenging allylic alcohols is shown. Detailed bulk and surface characterization reveals that incorporation of complementary macropores into mesoporous SBA-15 enhances the dispersion of sub 2 nm Pd nanoparticles and thus their degree of surface oxidation. Kinetic profiling reveals a relationship between nanoparticle dispersion and oxidation rate, identifying surface PdO as the catalytically active phase. Hierarchical nanoporous Pd/MM-SBA-15 outperforms mesoporous analogues in allylic alcohol selective oxidation by (i) stabilizing PdO nanoparticles and (ii) dramatically improving in-pore diffusion and access to active sites by sesquiterpenoid substrates such as farnesol and phytol. © 2013 American Chemical Society.
Resumo:
Here, we report on the first application of high-pressure XPS (HP-XPS) to the surface catalyzed selective oxidation of a hydrocarbon over palladium, wherein the reactivity of metal and oxide surfaces in directing the oxidative dehydrogenation of crotyl alcohol (CrOH) to crotonaldehyde (CrHCO) is evaluated. Crotonaldehyde formation is disfavored over Pd(111) under all reaction conditions, with only crotyl alcohol decomposition observed. In contrast, 2D Pd5O4 and 3D PdO overlayers are able to selectively oxidize crotyl alcohol (1 mTorr) to crotonaldehyde in the presence of co-fed oxygen (140 mTorr) at temperatures as low as 40 °C. However, 2D Pd5O4 ultrathin films are unstable toward reduction by the alcohol at ambient temperature, whereas the 3D PdO oxide is able to sustain catalytic crotonaldehyde production even up to 150 °C. Co-fed oxygen is essential to stabilize palladium surface oxides toward in situ reduction by crotyl alcohol, with stability increasing with oxide film dimensionality.
Resumo:
In-situ, synchronous MS/XANES reveals the Pd catalyzed selective aerobic oxidation of crotyl alcohol is regulated by the balance between the oxidation state and reducibility. Dynamic XANES measurements provide a new, rapid method to determine redox kinetics of nanoparticles and identify important parameters to optimize catalyst design. © 2012 American Chemical Society.
Resumo:
The influence of silica mesostructure upon the Pd-catalyzed selective oxidation of allylic alcohols has been investigated for amorphous and surfactant-templated SBA-15, SBA-16, and KIT-6 silicas. Significant rate enhancements can be achieved via mesopore introduction, most notably through the use of interconnected porous silica frameworks, reflecting both improved mass transport and increased palladium dispersion; catalytic activity decreases in the order Pd/KIT-6 ≈ Pd/SBA-16 > Pd/SBA-15 > Pd/SiO2. Evidence is presented that highly dispersed palladium oxide nanoparticles, not zerovalent palladium, are the catalytically active species. © 2011 American Chemical Society.
Resumo:
Here we demonstrate the first application of time-resolved synchrotron X-ray absorption spectroscopy to simultaneously follow dynamic nanoparticle surface restructuring and the evolution of surface and gas-phase products during an organic reaction. Surface palladium oxide, and not metal, is identified as the catalytic species responsible for the selective oxidation (selox) of crotyl alcohol to crotonaldehyde. Elevated reaction temperatures facilitate reversible nanoparticle redox processes, and concomitant catalytic selectivity loss, in response to reaction conditions. These discoveries highlight the importance of stabilizing surface palladium oxide and minimizing catalyst reducibility in order to achieve high selox yields, and will aid the future design of Pd-derived selox catalysts. This discovery has important implications for the design of future liquid and vapor phase selox catalysts, and the thermochemical behavior of Pd nanostructures in general.
Resumo:
Reactive surface of mesoporous nanocrystalline silicon was used to synthesise noble metal nanoparticles via in situ reduction of the precursor salt solutions. The synthetic methodology for metal nanoparticle formation was systematically developed, and reaction conditions of metal salts reduction were optimised to prepare nanoparticles of controlled size distribution in the order 5–10 nm inside the mesoporous silicon template. CO oxidation was used as a test reaction for the synthesised Pt/porous silicon catalysts. Sharp reaction light-off was observed at about 120 °C on the optimised catalysts. The catalysts were shown to be stable in the extended steady-state runs and in the catalysts re-use experiments. Metal nanoparticles were shown to be stable to sintering at elevated temperatures up to 1000 °C. However, after thermal treatment on air, Pt nanoparticles were covered by a SiOx layer and were less active in CO oxidation.
Resumo:
New heterogenized catalytic systems for the low-temperature oxidation of CO were synthesized by supporting solutions of Pd, Cu, and Fe salts on carbon fibrous materials (carbopon and busofit). The carbon supports were studied by elemental analysis, SEM, TGA, and TPD. The effects of the nature of the support, the concentration and composition of the active component, and the conditions of preparation on the efficiency of the catalytic system were studied. It was ascertained that attenuation of hydrophilic properties of the support led to the decrease in system activity. The investigation of the catalysts by XPS showed that sample treatment in the reaction medium results in redistribution of the components of the active phase in the near-surface layer of the catalyst. The catalytic system based on carbon fibrous material carbopon prepared by supporting active components (Pd, Cu, and Fe salts) in three stages with intermediate activation in the reaction medium ensures 95% conversion of CO under respiratory conditions, and is promising for the design of the main element of breathing masks on its basis.