5 resultados para ORGANIC-INORGANIC PEROVSKITES

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zirconium-containing periodic mesoporous organosilicas (Zr-PMOs) with varying framework organic content have been synthesized through a direct synthesis method. These materials display the excellent textural properties of the analogous inorganic solid acid Zr-SBA-15 material. However, the substitution of silica by organosilicon species provides a strong hydrophobic character. This substitution leads to meaningful differences in the environment surrounding the zirconium metal sites, leading the modification of the catalytic properties of these materials. Although lower metal incorporation is accomplished in the final materials, leading to a lower population of metal sites, hydrophobisation leads to an impressive beneficial effect on the intrinsic catalytic activity of the zirconium sites in biodiesel production by esterification/transesterification of free fatty acid -containing feedstock. Moreover, the catalytic activity of the highly hybridised materials is hardly affected in presence of large amounts of water, confirming their very good water-tolerance. This makes Zr-PMO materials interesting catalysts for biodiesel production from highly acidic water-containing feedstock. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoporous phospho-tungstate organic-inorganic hybrid materials have been synthesized from sodium tungstate and mono-n-dodecyl phosphate (MDP), which was used as both surfactant and phosphorus precursor. These hybrid materials were thoroughly characterized by N2 adsorption, elemental analysis, powder XRD, FTIR, Raman, TG, TEM and XPS and possess lamellar structures with interlayer spacings of 3.2 nm. A plausible method for formation of hybrid materials comprised of lacunary Keggin anions and micelles of surfactants is proposed. © The Royal Society of Chemistry 2008.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New sol-gel functionalized poly-ethylene glycol (PEGM)/SiO2-CaO hybrids were prepared with interpenetrating networks of silica and PEGM through the formation of Si-O-Si bonds. Bioactive and mechanical properties were investigated for a series of hybrids containing varying organic/inorganic ratios and PEG molecular weights. In contrast to the unmodified PEG/SiO2-CaO hybrids, which rapidly dissolved and crumbled, the epoxy modified hybrids exhibited good mechanical properties and bioactivity. The compressive strength and Young's modulus were greater for higher molecular weight PEGM hybrids (PEGM600 compared to PEGM300). Compressive strengths of 138 MPa and 81 MPa were found for the 50: 50 and 60: 40 organic/inorganic hybrid samples respectively, which are comparable with cortical bone. Young's modulus values of ∼800 MPa were obtained for the 50 : 50 and 60 : 40 organic/inorganic hybrids. Bioactivity tests were conducted by immersing the hybrids into simulated body fluid and observing the formation of apatite. Apatite formation was observed within 24 hours of immersion. PEGM600 hybrids showed enhanced apatite formation compared to PEGM300 hybrids. Increased apatite formation was observed with increasing organic/inorganic ratio. 70 : 30 and 60 : 40 hybrids exhibited the greatest apatite formation. All PEGM hybrids samples had good cell viability and proliferation. The 60 : 40 PEGM600 hybrids displayed the optimal combination of bioactivity and mechanical strength. The bioactivity of these hybrids, combined with the enhanced mechanical properties, demonstrate that these materials have significant potential for bone regeneration applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using molecular dynamics (MD) simulations, we explore the structural and dynamical properties of siRNA within the intercalated environment of a Mg:Al 2:1 Layered Double Hydroxide (LDH) nanoparticle. An ab initio force field (Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies: COMPASS) is used for the MD simulations of the hybrid organic-inorganic systems. The structure, arrangement, mobility, close contacts and hydrogen bonds associated with the intercalated RNA are examined and contrasted with those of the isolated RNA. Computed powder X-ray diffraction patterns are also compared with related LDH-DNA experiments. As a method of probing whether the intercalated environment approximates the crystalline or rather the aqueous state, we explore the stability of the principle parameters (e.g., the major groove width) that differentiate both A- and A'- crystalline forms of siRNA and contrast this with recent findings for the same siRNA simulated in water. We find the crystalline forms remain structurally distinct when intercalated, whereas this is not the case in water. Implications for the stability of hybrid LDH-RNA systems are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates four reference fuels and three low lignin Lolium Festuca grasses which were subjected to pyrolysis to produce pyrolysis oils. The oils were analysed to determine their quality and stability, enabling the identification of feedstock traits which affect oil stability. Two washed feedstocks were also subjected to pyrolysis to investigate whether washing can enhance pyrolysis oil quality. It was found that the mineral matter had the dominate effect on pyrolysis in compared to lignin content, in terms of pyrolysis yields for organics, char and gases. However the higher molecular weight compounds present in the pyrolysis oil are due to the lignin derived compounds as determined by results of GPC and liquid-GC/MS. The light organic fraction also increased in yield, but reduced in water content as metals increased at the expense of the lignin content. It was found that the fresh oil and aged oil had different compound intensities/concentrations, which is due to a large number of reactions occurring when the oil is aged day by day. These findings agree with previous reports which suggest that a large amount of re-polymerisation occurs as levoglucosan yields increase during the aging progress, while hydroxyacetaldehyde decrease. In summary the paper reports a window for producing a more stable pyrolysis oil by the use of energy crops, and also show that washing of biomass can improve oil quality and stability for high ash feedstocks, but less so for the energy crops.