16 resultados para ORGANIC CHLORINE COMPOUNDS
em Aston University Research Archive
Resumo:
A long-period grating (LPG) sensor is used to detect small variations in the concentration of an organic aromatic compound (xylene) in a paraffin (heptane) solution. A new design procedure is adopted and demonstrated to maximize the sensitivity of LPG (wavelength shift for a change in the surrounding refractive index, (dλ/dn3)) for a given application. The detection method adopted is comparable to the standard technique used in industry (high performance liquid chromatograph and UV spectroscopy) which has a relative accuracy between ∼±0.5% and 5%. The minimum detectable change in volumetric concentration is 0.04% in a binary fluid with the detection system presented. This change of concentration relates to a change in refractive index of Δn ∼ 6 × 10-5. © 2001 Elsevier Science B.V.
Resumo:
Arenesulfonic-acid functionalized SBA-15 materials have been used in the production of biodiesel from low grade oleaginous feedstock. These materials display an outstanding catalytic activity, being able to promote the transformation of crude palm oil with methanol into fatty acid methyl esters with high yield (85%) under mild reaction conditions. However, high sensitivity of the catalyst against poisoning by different substances has also been detected. Thus, alkaline metal cations, such as sodium or potassium exert a negative influence on the catalytic activity of these materials, being necessary amounts around 500 ppm of sodium in the reaction media to decrease the catalytic activity of these materials to a half of its initial value in just two reaction runs. The deactivation of arenesulfonic acid functionalized SBA-15 materials seems to occur in this case by ion exchange of the acid protons at the sulfonic groups. Organic unsaponifiable compounds like lecithin or retinol also induce a negative influence in the catalytic activity of these sulfonic acid-based materials, though not so intense as in the case of alkaline metals. The deactivating mechanism associated to the influence of the organic compounds seems to be linked to the adsorption of such substances onto the catalytic acid sites as well as on the silica surface. The accumulation of lecithin in the surface of catalyst, observed by means of thermogravimetric analysis, suggest the creation of a strong interaction, probably by ion pair, between this compound and the sulfonic acid group.
Resumo:
The objective of this research was to investigate the oxidation of organic compounds in molten alkali metal hydroxides containing manganates. It has been shown that controlled oxidation can be readily achieved with high specificity to give products in high yield with very short reaction times. The concurrent changes in the melt were monitored using a vibrating platinum indicator electrode with a quazi-reference electrode which was successfully developed for use in molten (Na-K)OH eutectic at 523K. Henry's Law constants for water in the molten eutectic system (Na-K)OH have been measured and used to calculate the water concentration in the melt. The electrochemistry of manganates in molten (Na-K)OH eutectic at 523K has been studied using the vibrating platinum electrode, and the existence of the species Mn(II), Mn(II!), Mn(IV), Mn(V) and Mn(VI) in such melts has been investigated at various water concentrations. The half-wave potentials of the voltammetric waves were measured versus the cathodic limit of the melt. The stability of Mn(V) or Mn(VI) in the melt was achieved by varying the water concentration. A range of organic chemicals has been passed through molten (Na-K)OH at 523K and the reactions of these chemicals with the melt have been studied. The same organics were then passed through molten (Na-K)OH containing stabilized Mn(V) or Mn{VI) without violent reaction. Methanol, allyl alcohol, propane 1, 2 diol, I-heptene and acetone were oxidized by Mn(V) and Mn(VI). Ethanol was only oxidized by Mn(VI), isopropanol and benzyl alcohol were only oxidized by Mn(V). Npropanol, butanol, 2 methyl propan-2-ol, n-hexane, n-heptane toluene and cyclohexane were unchanged by both Mn(V) and Mn(VI). Detailed experiments have been performed on the reactions of ethanol, iso-propanol and methanol in molten (Na-K)OH containing stabilized Mrt(V) or Mn(VI), and reaction mechanisms have been postulated. Ethanol and iso-propanol were oxidized to acetaldehyde and acetone respectively with a potential for useful chemical process. The oxidation of methanol could be developed as a basis for an industrial methanol disposal process.
Resumo:
The Knoevenagel condensation of aromatic aldehydes with active methylene compounds proceeded efficiently in a reusable ionic liquid, ethylammonium nitrate, at room temperature in the absence of any catalyst with high yields.
Resumo:
The infra-red detector material cadmium mercury telluride can be grown by the technique of Metal Organic Vapour Phase Epitaxy using simple alkyl telluride compounds as the source of tellurium. New tellurium precursors are required in order to overcome handling and toxicity problems and to reduce the growth temperature in preparing the material. A range of diaryltellurium(IV) dicarboxylates and some 2-(2'-pyridyl)phenyl-tellurium(II) and tellurium(IV) monocarboxylates have been synthesised and characterised by infra-red, 13C N.M.R. and mass spectroscopy. Infra-red spectroscopy has been used to determine the mode of bonding of the carboxylate ligand to tellurium. Synthetic methods have been devised for the preparation of diorganotritellurides (R2Te3) and mixed diorganotetrachalcogenides (RTeSeSeTeR). A mechanism for the formation of the tritellurides based on aerobic conditions is proposed. The reaction of ArTe- with (ClCH2CH2)3N leads to tripod-like multidentate ligands (ArTeCH2CH2)3N which form complexes with the ions Hg(II), Cd(II), Cu(I), Pt(II) and Pd(II). Synthetic routes to aryltelluroalkylamines and arylselenoalkylamines are also reported. The crystal structure of 2-(2'-pyridyl)phenyltellurium(II) bromide has been solved in which there are six molecules present within the unit cell. There are no close intermolecular Te---Te interactions and the molecules are stabilised by short Te---N intramolecular contacts. The crystal structure of 2-(2'-pyridyl)phenylselenium(II)-tribromomercurate(II) is also presented. A study of the Raman vibrational spectra of some tellurated azobenzenes and 2-phenylpyridines shows spectra of remarkably far superior quality to those obtained using infra-red spectroscopy.
Resumo:
Previous research has shown that the naturally occurring reactive electrophilic species (RES), 12-oxophytodienoic acid (OPDA), not only serves as a precursor for jasmonic acid but is also a potent antifungal compound. However, both the low amount present in plants and the multistep synthesis required to produce this compound on a scale viable for agrochemical use currently limits its practical value. The aim of this research was to generate a range of molecular mimics of OPDA with a minimum number of synthetic steps and screen for antifungal activity. Synthetic 4-octyl-cyclopentenone containing the cyclopentenone ring and an eight carbon alkyl chain was found to show the highest in vitro antifungal activity against C. herbarum and B. cinerea with minimum inhibition concentration (MIC) of 100-200µM. This indicates that structurally simplified 4-octyl-cyclopentenone can be successfully synthesised to mimic the antifungal activity of OPDA against specific fungal strains. Application of 4-octyl-cyclopentenone could act as surfactant by disrupting and disorganising the lipid membrane non-specifically, resulting in the leakage of potassium ions, which was the proposed mode of action of this compound. However, the sensitivity of fungi to this compound is not correlated to the lipid composition of fungal spores. (E)-2-alkenals were also studied for their antimicrobial activity and (E)-2-undecenal was found to have the highest antimicrobial activity against a range of pathogens. The hydrophilic moiety (the a,ß-unsaturated carbonyl group), common to both (E)-2-undecenal and 4-octyl-cyclentenone is essential to their bioactivity, and the hydrophobic moiety plays an important role in their antimicrobial activities. 4-Octyl-cyclopentenone showed no visible toxicity to the test plant, Arabidopsis thaliana, suggesting that its high antifungal activity against Botrytis and Cladosporium could be exploited for commercialisation as a new generation of agrochemical.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
A new method for debromination of organics by a reductive medium like polypropylene is investigated. The reaction is carried out in inert atmosphere to avoid rapid oxidation of the polymer. Through this detoxification procedure, hydrogen bromide and small brominated alkanes are formed. Experiments in closed ampoules are carried out with tetrabromobisphenol A, dibromophenol, pentabromodiphenyl ether, dichlorophenol and an oil formed by pyrolysis of printed circuit boards in the Haloclean® process. The reaction is examined under isothermal conditions in a temperature range between 300 and 400°C and a residence time between 10 and 30 min. Optimal conditions were found at 350°C and at a residence time of 20 min. As chlorinated phenols are not destroyed under these conditions, the process may be a valuable procedure to gain hydrogen bromide out of mixtures of halogenated feed materials. Also, under atmospheric pressure, a reaction between polypropylene and brominated compounds takes place as could be proved by thermogravimetric analysis. Bromobenzene has an accelerating effect on the rate of weight loss of the polymer, but at higher concentrations, it can also be slowed down. © 2003 Elsevier Ltd. All rights reserved.
Resumo:
N-Alkylation of heterocyclic compounds bearing an acidic hydrogen atom attached to nitrogen with alkyl halides is accomplished in ionic liquids ([bmim]BF4 = 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim]PF6 = 1-butyl-3-methylimida-zolium hexafluorophosphate, [buPy]BF4 = butylpyridinium tetrafluoroborate) in the presence of potassium hydroxide as a base. In this manner, phthalimide, indole, benzimidazole, succinimide can be successfully alkylated. The procedure is convenient, efficient, and generally affords the N-alkylated product exclusively.
Resumo:
The moisture and air stable ionic liquids 1-butyl-3-methylimidazonium tetrafluoroborate [bmim]BF4 and 1-butyl-3-methylimidazonium hexafluorophosphate [bmim]PF6 were used as ‘green' recyclable alternatives to volatile organic solvents (VOCs) for ethylenediammonium diacetate (EDDA) catalyzed Knoevenagel condensation between aldehydes or ketones with active methylene compounds. Both aldehydes and ketones gave satisfactory results. The ionic liquids containing catalyst EDDA were recycled several times with no decreases in yields and reaction rates. In the case of 2-hydroxybenzaldehyde, the reactions led to the formation of 3-substituted coumarins under standard reaction conditions.
Resumo:
The reactions of group 16 heterocycles with organometallic reagents are described. Thiophenes have been used as models for organic sulfur in coal and their reactivity towards triiron dodecacarbonyl has been investigated. Reaction of unsubstituted thiophene with Fe3(CO)12 results in desulfurisation of the heterocycle, with the organic fragment being recovered in the form of the ferrole, C4H4.Fe2(CO)6. In addition a novel organometallic compound of iron is isolated, the formula of which is shown to be C4H4.Fe3(CO)8. Bezothiophene reacts with Fe3(CO)12 to yield benzothiaferrole, C8H6S.Fe2(CO)6, in which the sulfur is retained in the heterocycle. Dibenzothiophene, a more accurate model for organic sulfur in coal, displays no reactivity towards the iron carbonyl, suggesting that the more condensed systems will desulfurise less readily. Microwave methodology has been successful in accelerating the reactions of thiophenes with Fe3(CO)12. However, reaction of benzothiophene does not proceed to the desulfurisation stage while dibenzothiophene is unreactive even under microwave conditions. Tellurophenes (Te analogues of thiophenes) are shown to mimic the behaviour of thiophenes towards certain organometallic reagents with the advantage that their greater reactivity enables recovery of products in higher yields. Hence, reaction of tellurophene with Fe3(CO)12 again affords the ferrole but with an almost ten-fold increase in yield over thiophene. More significantly, dibenzotellurophene is also detellurated by the iron carbonyl affording the previously inaccessible dibenzoferrole, C12H8.Fe2(CO)6, thereby demonstrating the mechanistic feasibility of dechalcogenation of the more condensed aromatic molecules. The potential of tellurium heterocycles to act as precursors for novel organometallics is also recognised owing to the relatively facile elimination of the heteroatom from these systems. Thus, 2-telluraindane reacts with Fe3(CO)12 to yield a novel organometallic compound of formula C16H16.Fe(CO)3, arising from the unsymmetric dimerisation of two organic fragments.
Resumo:
Cholecystokinin (CCK) is a peptide hormone, present in the alimentary and the CNS. It is the most abundant peptide in the brain. CCK has been implicated in a number of disorders. The link between CCK and anxiety was the basis for this research. A comprehensive discussion on the many types of CCK receptor antagonists is included. For the drug discovery process, a number of synthetic approaches have been investigated and alternative chemical approaches developed. 1,4-Benzodiazepine analogues were prepared, with substitutents In the 1,2 & 3- position of the benzodiazepine scaffold varied, and substituted 3-anilino benzodiazepines exhibited the greatest in vitro activity towards the CCKA receptor subtype. Through extensive screening, pyrazolinone-ureido derivatives were identified, optimised, SAR studied and re-screened. A comprehensive in vivo study on the most active analogue is included, which has a number of common structural features with L-36S, 260 including activity. Pyrazolinone-amide derivatives, bearing the tryptophan moiety were equally active. A number of existing and novel furan- 2(SH)-one building blocks were prepared, from which a selected mini-library of 4- amino-substituted furan-2(SH)-ones were prepared and evaluated. All synthesised compounds were evaluated in a CCK radiolabelled binding assay (CCKA & CCKB), with compounds demonstrating receptor selectivity and lead structures being discovered. The work in this thesis has identified a number of highly active prime structures, from which further investigations are essential in providing more in vitro & in vivo data and the need to prepare more analogues.
Resumo:
Several copolymers of linear polystyrene were prepared for evaluation as soluble polymeric supports for organic synthesis. These polymers were utilized for the synthesis of ?2-isoxazoline compounds. The target compounds were synthesized via 1,3-dipolar cycloaddition reactions between polymer bound alkenes and nitrile oxides generated in situ from their corresponding aldoximes. The cleaved ?2-isoxazoline compounds were tested for biological activity against Mycobacterium fortuitum. To compare the success of these linear polystyrene copolymers, some of the ?2-isoxazoline compounds synthesized on soluble polymeric supports were also prepared via traditional crosslinked polymer supports. The polymer-bound ?2-isoxazolines were also tested for antimicrobial activity. In addition attempts were made to prepare polymers containing the ?2-isoxazolines but anchored by non-hydrolysable bonds. Although the copolymers of polystyrene gave good loading capacity in mmol/g, and being soluble in chlorinated solvents it was possible to monitor the reactions by 1H NMR spectroscopy, the cleavage of the polymer bound products proved to be quite troublesome. Product purification was not as straightforward as it was anticipated. Isolation of the cleaved target compounds proved to be time consuming and laborious when compared to the traditional organic synthesis and solid phase organic synthesis (SPOS). Polymer-bound ?2-isoxazolines close to the polymer backbone exhibited some biological activity against Staphylococcus aureus. Polymers with substitution at the para-position of the aryl substituent at position 3 of isoxazoline ring showed antimicrobial activity.