8 resultados para OPTICAL MICROSCOPY

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The tribology of linear tape storage system including Linear Tape Open (LTO) and Travan5 was investigated by combining X-ray Photoelectron Spectroscopy (XPS), Auger Electron Spectroscopy (AES), Optical Microscopy and Atomic Force Microscopy (AFM) technologies. The purpose of this study was to understand the tribology mechanism of linear tape systems then projected recording densities may be achieved in future systems. Water vapour pressure or Normalized Water Content (NWC) rather than the Relative Humidity (RH) values (as are used almost universally in this field) determined the extent of PTR and stain (if produced) in linear heads. Approximately linear dependencies were found for saturated PTR increasing with normalized water content increasing over the range studied using the same tape. Fe Stain (if produced) preferentially formed on the head surfaces at the lower water contents. The stain formation mechanism had been identified. Adhesive bond formation is a chemical process that is governed by temperature. Thus the higher the contact pressure, the higher the contact temperature in the interface of head and tape, was produced higher the probability of adhesive bond formation and the greater the amount of transferred material (stain). Water molecules at the interface saturate the surface bonds and makes adhesive junctions less likely. Tape polymeric binder formulation also has a significant role in stain formation, with the latest generation binders producing less transfer of material. This is almost certainly due to higher cohesive bonds within the body of the magnetic layer. TiC in the two-phase ceramic tape-bearing surface (AlTiC) was found to oxidise to form TiO2.The oxidation rate of TiC increased with water content increasing. The oxide was less dense than the underlying carbide; hence the interface between TiO2 oxide and TiC was stressed. Removals of the oxide phase results in the formation of three-body abrasive particles that were swept across the tape head, and gave rise to three-body abrasive wear, particularly in the pole regions. Hence, PTR and subsequent which signal loss and error growth. The lower contact pressure of the LTO system comparing with the Travan5 system ensures that fewer and smaller three-body abrasive particles were swept across the poles and insulator regions. Hence, lower contact pressure, as well as reducing stain in the same time significantly reduces PTR in the LTO system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pin on disc wear machines were used to study the boundary lubricated friction and wear of AISI 52100 steel sliding partners. Boundary conditions were obtained by using speed and load combinations which resulted in friction coefficients in excess of 0.1. Lubrication was achieved using zero, 15 and 1000 ppm concentrations of an organic dimeric acid additive in a hydrocarbon base stock. Experiments were performed for sliding speeds of 0.2, 0.35 and 0.5 m/s for a range of loads up to 220 N. Wear rate, frictional force and pin temperature were continually monitored throughout tests and where possible complementary methods of measurement were used to improve accuracy. A number of analytical techniques were used to examine wear surfaces, debris and lubricants, namely: Scanning Electron Microscopy (SEM), Auger Electron Spectroscopy (AES), Powder X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), optical microscopy, Back scattered Electron Detection (BSED) and several metallographic techniques. Friction forces and wear rates were found to vary linearly with load for any given combination of speed and additive concentration. The additive itself was found to act as a surface oxidation inhibitor and as a lubricity enhancer, particularly in the case of the higher (1000 ppm) concentration. Wear was found to be due to a mild oxidational mechanism at low additive concentrations and a more severe metallic mechanism at higher concentrations with evidence of metallic delamination in the latter case. Scuffing loads were found to increase with increasing additive concentration and decrease with increasing speed as would be predicted by classical models of additive behaviour as an organo-metallic soap film. Heat flow considerations tended to suggest that surface temperature was not the overriding controlling factor in oxidational wear and a model is proposed which suggests oxygen concentration in the lubricant is the controlling factor in oxide growth and wear.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The surfaces of iron-containing sulphide minerals were oxidised by a range of inorganic oxidants, and the resultant surface alteration products studied using various spectroscopic techniques. The characterisation of surface oxidation is relevant to the alteration of ores in nature and their behaviour during flotation and leaching, of importance to the metallurgical industry. The sulphides investigated included pyrite (FeS2), hexagonal pyrrhotine (Fe9S10), monoclinic pyrrhotine (Fe7Se), violarite (FeNi2S4), pentlandite ((FeiNi)9Se), chalcopyrite (CuFeS2) and arsenopyrite (FeAsS). The surfaces were oxidised by various methods including acid (sulphuric), alkali (ammonium hydroxide), hydrogen peroxide, steam, electrochemical and air/oxygen (in a low-temperature (150ºC) furnace), The surfaces were examined using surface sensitive chemical spectroscopic methods including x-ray photoelectron spectroscopy (ms), Auger electron spectroscopy (LES) and conversion electron Mössbauer spectroscopy (CEKS). Physical characterisation of the surfaces was undertaken using scanning electron microscopy (SM), spectral reflectance measurements and optical microscopy. Bulk characterisation of the sulphide minerals was undertaken using x-ray diffraction and electron microprobe techniques. Observed phases suggested to form in most of the sulphide surfaces include Fe204, Fe1-x0, Fe202, Fe00H, Fe(OH)3, with iron II & III oxy-sulphates. The iron sulphides show variable extents of oxidation, indicating pyrite to be the most stable. Violarite shows stability to oxidation, suggested to result from both its stable spinel crystal structure, and from the rapid formation of sulphur at the surface protecting the sub-surface from further oxidation. The phenomenon of sub-surface enrichment (in metals), forming secondary sulphides, is exhibited by pentlandite and chalcopyrite, forming violarite and copper sulphides respectively. The consequences of this enrichment with regard to processing and leaching are discussed. Arsenopyrite, often a hindrance in ore processing, exhibits the formation of arsenic compounds at the surface, the dissolution of which is discussed in view of the possible environmental hazard caused by the local pollution of water systems. The results obtained allow a characterisation of the sulphides in terms of their relative stability to oxidation, and an order of stability of the sulphide surfaces is proposed. Models were constructed to explain the chemical compositions of the surfaces, and the inter-relationships between the phases determined at the surface and in the sub-surface. These were compared to the thermo-chemically predicted phases shown in Eh/pH and partial pressure diagrams! The results are discussed, both in terms of the mineralogy and geochemistry of natural ores, and the implications for extraction and processing of these ore minerals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A study was made of the corrosion behaviour in the ASTM standard Nitric acid and Oxalic acid tests, of two commercial AISI type 304L steels in the as received condition and after various heat treatments. Optical microscopy and SEM, TEM and STEM in conjunction with energy dispersive x-ray analysis, were used to correlate the corrosion behaviour of these steels with their microstructure. Some evidence of phosphorus segregation at grain boundaries was found. The corrosion behaviour at microstructural level was studied by examining on the TEM thin foils of steel that had been exposed to boiling nitric acid. Banding attack in the nitric acid and oxalic acid tests was studied using SEM and EPNA and found to be due to the micro-segregation of chromium and nickel. Using two experimental series of 304L, one a 17% Cr, 91 Ni, steel with phosphorus additions from 0.006% to 0.028%, the other a 20% Cr, 121 Ni steel with boron additions from 0.0011 to 0.00B51. The effect of these elements on corrosion in the nitric acid test was studied. The effect of different cooling rates and different solution treatment temperature on the behaviour of these steels was examined. TEM and STEM in conjunction with energy-dispersive x-ray analysis were again used to study the microstructure of the steels. Phosphorus was found to affect the corrosion behaviour but no effect was found with boron.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this research project is to evaluate whether or not pullulan films are suitable to buccal drug delivery of a phosphodiesterase5 (PDE5) inhibitor yonkenafil, which was discovered in our research group and currently is under phase II clinical trial for treatment of erectile dysfunction. Variable formulations of pullulan films were designed and the films were prepared. Mechanical properties of the films, in vitro drug release and polymer dissolution, in vitro drug penetration through porcine esophageal mucosa were investigated. The plasticization effects of solvents, polyols and acids to the films were studied by tensile test, and differential scanning calorimetry, thermogravimetric analysis, fourier transform-infrared, scanning electron microscopy, optical microscopy was applied to analyse the structure and chemical-bonding between pullulan and the additives within the films. Release mathematics models were used in the study of the mechanism of drug releases and polymer dissolutions. Ethanol, menthol, fatty acids, and sodium dodecyl sulphate were employed as penetration enhancers to pretreat the tissue. Various plasticizers and acids were applied into the films and the result showed polyethylene glycol 400 and 600 had the excellent plasticization effect on the drug-free pullulan films, while lactic acid was the best plasticizer for the drug-loaded films. Both PEG400 and lactic acid had a great effect on the drug release from the films in vitro, and all the results indicated that the hydroxyl and carboxyl groups of pullulan and the additives influenced the mechanical properties of the films significantly, and also altered drug release mechanisms. Ethanol shows the greatest enhancing ability on the drug permeation through the porcine esophageal mucosa. A possible mechanism for this is that ethanol interferes with the structure of the lipids in the mucosa, resulting in increased partitioning of the drug into the membrane.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Preliminary work is reported on 2-D and 3-D microstructures written directly with a Yb:YAG 1026 nm femtosecond (fs) laser on bulk chemical vapour deposition (CVD) single-crystalline diamond. Smooth graphitic lines and other structures were written on the surface of a CVD diamond sample with a thickness of 0.7mm under low laser fluences. This capability opens up the opportunity for making electronic devices and micro-electromechanical structures on diamond substrates. The fabrication process was optimised through testing a range of laser energies at a 100 kHz repetition rate with sub-500fs pulses. These graphitic lines and structures have been characterised using optical microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy. Using these analysis techniques, the formation of sp2 and sp3 bonds is explored and the ratio between sp2 and sp3 bonds after fs laser patterning is quantified. We present the early findings from this study and characterise the relationship between the graphitic line formation and the different fs laser exposure conditions. © 2012 Taylor & Francis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As the world's synchrotrons and X-FELs endeavour to meet the need to analyse ever-smaller protein crystals, there grows a requirement for a new technique to present nano-dimensional samples to the beam for X-ray diffraction experiments.The work presented here details developmental work to reconfigure the nano tweezer technology developed by Optofluidics (PA, USA) for the trapping of nano dimensional protein crystals for X-ray crystallography experiments. The system in its standard configuration is used to trap nano particles for optical microscopy. It uses silicon nitride laser waveguides that bridge a micro fluidic channel. These waveguides contain 180 nm apertures of enabling the system to use biologically compatible 1.6 micron wavelength laser light to trap nano dimensional biological samples. Using conventional laser tweezers, the wavelength required to trap such nano dimensional samples would destroy them. The system in its optical configuration has trapped protein molecules as small as 10 nanometres.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As the world's synchrotrons and X-FELs endeavour to meet the need to analyse ever-smaller protein crystals, there grows a requirement for a new technique to present nano-dimensional samples to the beam for X-ray diffraction experiments.The work presented here details developmental work to reconfigure the nano tweezer technology developed by Optofluidics (PA, USA) for the trapping of nano dimensional protein crystals for X-ray crystallography experiments. The system in its standard configuration is used to trap nano particles for optical microscopy. It uses silicon nitride laser waveguides that bridge a micro fluidic channel. These waveguides contain 180 nm apertures of enabling the system to use biologically compatible 1.6 micron wavelength laser light to trap nano dimensional biological samples. Using conventional laser tweezers, the wavelength required to trap such nano dimensional samples would destroy them. The system in its optical configuration has trapped protein molecules as small as 10 nanometres.