7 resultados para OPTIC FLOW

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract We recorded MEG responses from 17 participants viewing random-dot patterns simulating global optic flow components (expansion, contraction, rotation, deformation, and translation) and a random motion control condition. Theta-band (3–7 Hz), MEG signal power was greater for expansion than the other optic flow components in a region concentrated along the calcarine sulcus, indicating an ecologically valid, foveo-fugal bias for unidirectional motion sensors in V1. When the responses to the optic flow components were combined, a decrease in MEG beta-band (17–23 Hz) power was found in regions extending beyond the calcarine sulcus to the posterior parietal lobe (inferior to IPS), indicating the importance of structured motion in this region. However, only one cortical area, within or near the V5/hMT+ complex, responded to all three spiral-space components (expansion, contraction, and rotation) and showed no selectivity for global translation or deformation: we term this area hMSTs. This is the first demonstration of an exclusive region for spiral space in the human brain and suggests a functional role better suited to preliminary analysis of ego-motion than surface pose, which would involve deformation. We also observed that the rotation condition activated the cerebellum, suggesting its involvement in visually mediated control of postural adjustment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is well known that optic flow - the smooth transformation of the retinal image experienced by a moving observer - contains valuable information about the three-dimensional layout of the environment. From psychophysical and neurophysiological experiments, specialised mechanisms responsive to components of optic flow (sometimes called complex motion) such as expansion and rotation have been inferred. However, it remains unclear (a) whether the visual system has mechanisms for processing the component of deformation and (b) whether there are multiple mechanisms that function independently from each other. Here, we investigate these issues using random-dot patterns and a forced-choice subthreshold summation technique. In experiment 1, we manipulated the size of a test region that was permitted to contain signal and found substantial spatial summation for signal components of translation, expansion, rotation, and deformation embedded in noise. In experiment 2, little or no summation was found for the superposition of orthogonal pairs of complex motion patterns (eg expansion and rotation), consistent with probability summation between pairs of independent detectors. Our results suggest that optic-flow components are detected by mechanisms that are specialised for particular patterns of complex motion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Growing evidence from psychophysics and single-unit recordings suggests specialised mechanisms in the primate visual system for the detection of complex motion patterns such as expansion and rotation. Here we used a subthreshold summation technique to determine the direction tuning functions of the detecting mechanisms. We measured thresholds for discriminating noise and signal + noise for pairs of superimposed complex motion patterns (signal A and B) carried by random-dot stimuli in a circular 5° field. For expansion, rotation, deformation and translation we found broad tuning functions approximated by cos(d), where d is the difference in dot directions for signal A and B. These data were well described by models in which either: (a) cardinal mechanisms had direction bandwidths (half-widths) of around 60° or (b) the number of mechanisms was increased and their half-width was reduced to about 40°. When d = 180° we found summation to be greater than probability summation for expansion, rotation and translation, consistent with the idea that mechanisms for these stimuli are constructed from subunits responsive to relative motion. For deformation, however, we found sensitivity declined when d = 180°, suggesting antagonistic input from directional subunits in the deformation mechanism. This is a necessary property for a mechanism whose job is to extract the deformation component from the optic flow field. © 2001 Elsevier Science Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A critical review of previous research revealed that visual attention tests, such as the Useful Field of View (UFOV) test, provided the best means of detecting age-related changes to the visual system that could potentially increase crash risk. However, the question was raised as to whether the UFOV, which was regarded as a static visual attention test, could be improved by inclusion of kinetic targets that more closely represent the driving task. A computer program was written to provide more information about the derivation of UFOV test scores. Although this investigation succeeded in providing new information, some of the commercially protected UFOV test procedures still remain unknown. Two kinetic visual attention tests (DRTS1 and 2), developed at Aston University to investigate inclusion of kinetic targets in visual attention tests, were introduced. The UFOV was found to be more repeatable than either of the kinetic visual attention tests and learning effects or age did not influence these findings. Determinants of static and kinetic visual attention were explored. Increasing target eccentricity led to reduced performance on the UFOV and DRTS1 tests. The DRTS2 was not affected by eccentricity but this may have been due to the style of presentation of its targets. This might also have explained why only the DRTS2 showed laterality effects (i.e. better performance to targets presented on the left hand side of the road). Radial location, explored using the UFOV test, showed that subjects responded best to targets positioned to the horizontal meridian. Distraction had opposite effects on static and kinetic visual attention. While UFOV test performance declined with distraction, DRTS1 performance increased. Previous research had shown that this striking difference was to be expected. Whereas the detection of static targets is attenuated in the presence of distracting stimuli, distracting stimuli that move in a structured flow field enhances the detection of moving targets. Subjects reacted more slowly to kinetic compared to static targets, longitudinal motion compared to angular motion and to increased self-motion. However, the effects of longitudinal motion, angular motion, self-motion and even target eccentricity were caused by target edge speed variations arising because of optic flow field effects. The UFOV test was more able to detect age-related changes to the visual system than were either of the kinetic visual attention tests. The driving samples investigated were too limited to draw firm conclusions. Nevertheless, the results presented showed that neither the DRTS2 nor the UFOV tests were powerful tools for the identification of drivers prone to crashes or poor driving performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There were four principal sections to the work: 1. Investigation of ocular and systemic vascular risk factors in POAG. The principal findings of this work were: a). Glaucoma patients exhibit an anticipatory reaction to the physical stress, similar to subjects at risk for cardiovascular diseases; a blunted BP response and a reduction in ONH blood flow in response to cold provocation was also recorded. b). Silent myocardial ischaemic episodes occurred during peaks in systemic BP and HR. c). Independent of a positive history for cardiovascular diseases, patients suffering from POAG demonstrate a blunt circadian rhythm of the ANS. 2. Assessment of the relationship between vascular and systemic vascular risk factors in GON. The principal findings of this work were: a). POAG patients demonstrate a high sympathetic tonus over a 24-h period. b). POAG patients with lower OBF demonstrate both 24-h systemic BP and HRV abnormalities. c). OBF alterations observed in some glaucoma patients could be either primary or secondary to systemic haemodynamic disturbances and not a consequence of ONH damage. 3. Assessment of the level of systemic anti-oxidant defence in POAG patients. The principal finding of this work was: Patients suffering from POAG demonstrated significantly lower GSH and t-GSH levels than normal controls. 4. Investigation of the effect of treatment with latanoprost 0.005% on visual function and OBF. The findings of this work were: a). Treatment with latanoprost 0.005% resulted in a significant decrease in IOP and increase in OPP. VF damage progression has also been stopped. b). Treatment with latanoprost 0.005% resulted in a significant increase in the OBF parameters measured at the ONH and peripapillary retina levels. Finally, the importance of a clear protocol for managing new POAG cases is highlighted and a clinical conduit is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Loss of optic nerve head (ONH) axons in primary open angle glaucoma (POAG) has been attributed to both mechanical and vascular factors. Confocal scanning laser ophthalmoscopy (cSLO) provides a promising tool for the topographic follow-up of the ONH in glaucoma, while scanning laser Doppler flowmetry (SLDF) facilitates the rapid non-invasive assessment of retinal capillary blood flow. The purposes of these investigations were to optimise the techniques and explore their potential to classify and monitor disease. Preliminary investigations explored the reproducibility and validity of cSLO and SLDF and showed that: For cSLO: In a model eye, measurements are accurate over a range of axial lengths. For best reproducibility, seven images per visit are required, with a contour line located on Elschnig's scleral ring and transferred automatically between images. For SLDF: Three perfusion images are required for optimum reproducibility. Physiological changes induced by gas perturbation can be measured. Cross-sectional comparison of groups of normal subjects and early POAG patients showed that: cSLO parameters differentiate the early POAG group. Blood volume measured by SLDF showed group differences in superior nasal retina only. Longitudinal investigation of ONH topography, haemodynamic and visual field indices in normal subjects and POAG patients showed that: cSLO detects topographical change over time more frequently in the POAG group. Important parameters include: C:D area ratio, cup and rim area, mean depth in contour, volumes above and below reference and surface. Factor analysis identified "cup" and "rim" factors that can be used to detect change over time in individual patients. Blood flow changes were most apparent in the inferior nasal peripapillary retina of the POAG group. Perimetry is of clinical value for the identification of glaucoma but is less sensitive than cSLO for monitoring glaucomatous change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To investigate whether regional long-term changes in peripapillary retinal flow, measured by scanning laser Doppler flowmetry (SLDF), occur in patients with primary open angle glaucoma (POAG). Methods: 31 healthy volunteers (mean age: 65 8.3 years) and 33 POAG patients (mean age: 71.2 7.6 years) were followed up every 4 months for 16 months. Using SLDF, three images of the superior and inferior optic nerve head were obtained for each subject. A 1010-pixel frame was used to measure blood flow, volume and velocity in the four quadrants of the peripapillary retina. Central 24-2 visual field testing was carried out at each visit. Repeated measures analysis of covariance was used to assess change over time between the normal and POAG groups for the SLDF parameters. Univariate linear regression analysis for mean deviation and glaucoma change probability (GCP) analysis were used to identify visual field progression. Results: Blood volume, flow and velocity measured in the inferior nasal quadrant of the peripapillary retina decreased significantly over time for the POAG group compared to the normal group (p=0.0073, 0.0097, 0.0095 respectively). Overall, 2 glaucoma patients showed a significantly deteriorating MD slope, while 7 patients showed visual field progression with GPA. All of the patients progressing with GPA, showed change in the superior hemifield and, of those, 14% showed change in the inferior hemifield. Conclusion: Glaucoma patients showed a decrease in blood flow, volume and velocity in the inferior nasal peripapillary retina. A regional variation in microvascular retinal capillary blood flow may provide insight into the pathogenesis of glaucomatous optic neuropathy. Keywords: 331 blood supply • 554 retina • 624 visual fields