7 resultados para OPACITY CALCULATIONS
em Aston University Research Archive
Resumo:
OBJECTIVE: To assess the effect of using different risk calculation tools on how general practitioners and practice nurses evaluate the risk of coronary heart disease with clinical data routinely available in patients' records. DESIGN: Subjective estimates of the risk of coronary heart disease and results of four different methods of calculation of risk were compared with each other and a reference standard that had been calculated with the Framingham equation; calculations were based on a sample of patients' records, randomly selected from groups at risk of coronary heart disease. SETTING: General practices in central England. PARTICIPANTS: 18 general practitioners and 18 practice nurses. MAIN OUTCOME MEASURES: Agreement of results of risk estimation and risk calculation with reference calculation; agreement of general practitioners with practice nurses; sensitivity and specificity of the different methods of risk calculation to detect patients at high or low risk of coronary heart disease. RESULTS: Only a minority of patients' records contained all of the risk factors required for the formal calculation of the risk of coronary heart disease (concentrations of high density lipoprotein (HDL) cholesterol were present in only 21%). Agreement of risk calculations with the reference standard was moderate (kappa=0.33-0.65 for practice nurses and 0.33 to 0.65 for general practitioners, depending on calculation tool), showing a trend for underestimation of risk. Moderate agreement was seen between the risks calculated by general practitioners and practice nurses for the same patients (kappa=0.47 to 0.58). The British charts gave the most sensitive results for risk of coronary heart disease (practice nurses 79%, general practitioners 80%), and it also gave the most specific results for practice nurses (100%), whereas the Sheffield table was the most specific method for general practitioners (89%). CONCLUSIONS: Routine calculation of the risk of coronary heart disease in primary care is hampered by poor availability of data on risk factors. General practitioners and practice nurses are able to evaluate the risk of coronary heart disease with only moderate accuracy. Data about risk factors need to be collected systematically, to allow the use of the most appropriate calculation tools.
Resumo:
Epitopes mediated by T cells lie at the heart of the adaptive immune response and form the essential nucleus of anti-tumour peptide or epitope-based vaccines. Antigenic T cell epitopes are mediated by major histocompatibility complex (MHC) molecules, which present them to T cell receptors. Calculating the affinity between a given MHC molecule and an antigenic peptide using experimental approaches is both difficult and time consuming, thus various computational methods have been developed for this purpose. A server has been developed to allow a structural approach to the problem by generating specific MHC:peptide complex structures and providing configuration files to run molecular modelling simulations upon them. A system has been produced which allows the automated construction of MHC:peptide structure files and the corresponding configuration files required to execute a molecular dynamics simulation using NAMD. The system has been made available through a web-based front end and stand-alone scripts. Previous attempts at structural prediction of MHC:peptide affinity have been limited due to the paucity of structures and the computational expense in running large scale molecular dynamics simulations. The MHCsim server (http://igrid-ext.cryst.bbk.ac.uk/MHCsim) allows the user to rapidly generate any desired MHC:peptide complex and will facilitate molecular modelling simulation of MHC complexes on an unprecedented scale.
Resumo:
The method for the computation of the conditional probability density function for the nonlinear Schrödinger equation with additive noise is developed. We present in a constructive form the conditional probability density function in the limit of small noise and analytically derive it in a weakly nonlinear case. The general theory results are illustrated using fiber-optic communications as a particular, albeit practically very important, example.
Resumo:
For the first time for the model of real-world forward-pumped fibre Raman amplifier with the randomly varying birefringence, the stochastic calculations have been done numerically based on the Kloeden-Platen-Schurz algorithm. The results obtained for the averaged gain and gain fluctuations as a function of polarization mode dispersion (PMD) parameter agree quantitatively with the results of previously developed analytical model. Simultaneously, the direct numerical simulations demonstrate an increased stochastisation (maximum in averaged gain variation) within the region of the polarization mode dispersion parameter of 0.1÷0.3 ps/km1/2. The results give an insight into margins of applicability of a generic multi-scale technique widely used to derive coupled Manakov equations and allow generalizing analytic model with accounting for pump depletion, group-delay dispersion and Kerr-nonlinearity that is of great interest for development of the high-transmission-rates optical networks.
Resumo:
Electromagnetic design of a 1.12-MW, 18 000-r/min high-speed permanent-magnet motor (HSPMM) is carried out based on the analysis of pole number, stator slot number, rotor outer diameter, air-gap length, permanent magnet material, thickness, and pole arc. The no-load and full-load performance of the HSPMM is investigated in this paper by using 2-D finite element method (FEM). In addition, the power losses in the HSPMM including core loss, winding loss, rotor eddy current loss, and air friction loss are predicted. Based on the analysis, a prototype motor is manufactured and experimentally tested to verify the machine design.
Resumo:
A rapid and efficient method to identify the weak points of the complex chemical structure of low band gap (LBG) polymers, designed for efficient solar cells, when submitted to light exposure is reported. This tool combines Electron Paramagnetic Resonance (EPR) using the 'spin trapping method' coupled with density functional theory modelling (DFT). First, the nature of the short life-time radicals formed during the early-stages of photo-degradation processes are determined by a spin-trapping technique. Two kinds of short life-time radical (R and R′O) are formed after 'short-duration' illumination in an inert atmosphere and in ambient air, respectively. Second, simulation allows the identification of the chemical structures of these radicals revealing the most probable photochemical process, namely homolytical scission between the Si atom of the conjugated skeleton and its pendent side-chains. Finally, DFT calculations confirm the homolytical cleavage observed by EPR, as well as the presence of a group that is highly susceptible to photooxidative attack. Therefore, the synergetic coupling of a spin trapping method with DFT calculations is shown to be a rapid and efficient method for providing unprecedented information on photochemical mechanisms. This approach will allow the design of LBG polymers without the need to trial the material within actual solar cell devices, an often long and costly screening procedure.