15 resultados para Nonlinear Equations

em Aston University Research Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Using a fiber laser system as a specific illustrative example, we introduce the concept of intermediate asymptotic states in finite nonlinear optical systems. We show that intermediate asymptotics of nonlinear equations (e.g., coherent structures with a finite lifetime or distance) can be used in applications similar to those of truly stable asymptotic solutions, such as, e.g., solitons and dissipative nonlinear waves. Applying this general idea to a particular, albeit practically important, physical system, we demonstrate a novel type of nonlinear pulse-shaping regime in a mode-locked fiber laser leading to the generation of linearly chirped pulses with a triangular distribution of the intensity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Using a fiber laser system as a specific illustrative example, we introduce the concept of intermediate asymptotic states in finite nonlinear optical systems. We show that intermediate asymptotics of nonlinear equations (e.g., coherent structures with a finite lifetime or distance) can be used in applications similar to those of truly stable asymptotic solutions, such as, e.g., solitons and dissipative nonlinear waves. Applying this general idea to a particular, albeit practically important, physical system, we demonstrate a novel type of nonlinear pulse-shaping regime in a mode-locked fiber laser leading to the generation of linearly chirped pulses with a triangular distribution of the intensity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A generalized systematic description of the Two-Wave Mixing (TWM) process in sillenite crystals allowing for arbitrary orientation of the grating vector is presented. An analytical expression for the TWM gain is obtained for the special case of plane waves in a thin crystal (|g|d«1) with large optical activity (|g|/?«1, g is the coupling constant, ? the rotatory power, d the crystal thickness). Using a two-dimensional formulation the scope of the nonlinear equations describing TWM can be extended to finite beams in arbitrary geometries and to any crystal parameters. Two promising applications of this formulation are proposed. The polarization dependence of the TWM gain is used for the flattening of Gaussian beam profiles without expanding them. The dependence of the TWM gain on the interaction length is used for the determination of the crystal orientation. Experiments carried out on Bi12GeO20 crystals of a non-standard cut are in good agreement with the results of modelling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A generalized systematic description of the Two-Wave Mixing (TWM) process in sillenite crystals allowing for arbitrary orientation of the grating vector is presented. An analytical expression for the TWM gain is obtained for the special case of plane waves in a thin crystal (|g|d«1) with large optical activity (|g|/?«1, g is the coupling constant, ? the rotatory power, d the crystal thickness). Using a two-dimensional formulation the scope of the nonlinear equations describing TWM can be extended to finite beams in arbitrary geometries and to any crystal parameters. Two promising applications of this formulation are proposed. The polarization dependence of the TWM gain is used for the flattening of Gaussian beam profiles without expanding them. The dependence of the TWM gain on the interaction length is used for the determination of the crystal orientation. Experiments carried out on Bi12GeO20 crystals of a non-standard cut are in good agreement with the results of modelling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a review of the latest developments in one-dimensional (1D) optical wave turbulence (OWT). Based on an original experimental setup that allows for the implementation of 1D OWT, we are able to show that an inverse cascade occurs through the spontaneous evolution of the nonlinear field up to the point when modulational instability leads to soliton formation. After solitons are formed, further interaction of the solitons among themselves and with incoherent waves leads to a final condensate state dominated by a single strong soliton. Motivated by the observations, we develop a theoretical description, showing that the inverse cascade develops through six-wave interaction, and that this is the basic mechanism of nonlinear wave coupling for 1D OWT. We describe theory, numerics and experimental observations while trying to incorporate all the different aspects into a consistent context. The experimental system is described by two coupled nonlinear equations, which we explore within two wave limits allowing for the expression of the evolution of the complex amplitude in a single dynamical equation. The long-wave limit corresponds to waves with wave numbers smaller than the electrical coherence length of the liquid crystal, and the opposite limit, when wave numbers are larger. We show that both of these systems are of a dual cascade type, analogous to two-dimensional (2D) turbulence, which can be described by wave turbulence (WT) theory, and conclude that the cascades are induced by a six-wave resonant interaction process. WT theory predicts several stationary solutions (non-equilibrium and thermodynamic) to both the long- and short-wave systems, and we investigate the necessary conditions required for their realization. Interestingly, the long-wave system is close to the integrable 1D nonlinear Schrödinger equation (NLSE) (which contains exact nonlinear soliton solutions), and as a result during the inverse cascade, nonlinearity of the system at low wave numbers becomes strong. Subsequently, due to the focusing nature of the nonlinearity, this leads to modulational instability (MI) of the condensate and the formation of solitons. Finally, with the aid of the probability density function (PDF) description of WT theory, we explain the coexistence and mutual interactions between solitons and the weakly nonlinear random wave background in the form of a wave turbulence life cycle (WTLC).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is concerned with the measurement of the characteristics of nonlinear systems by crosscorrelation, using pseudorandom input signals based on m sequences. The systems are characterised by Volterra series, and analytical expressions relating the rth order Volterra kernel to r-dimensional crosscorrelation measurements are derived. It is shown that the two-dimensional crosscorrelation measurements are related to the corresponding second order kernel values by a set of equations which may be structured into a number of independent subsets. The m sequence properties determine how the maximum order of the subsets for off-diagonal values is related to the upper bound of the arguments for nonzero kernel values. The upper bound of the arguments is used as a performance index, and the performance of antisymmetric pseudorandom binary, ternary and quinary signals is investigated. The performance indices obtained above are small in relation to the periods of the corresponding signals. To achieve higher performance with ternary signals, a method is proposed for combining the estimates of the second order kernel values so that the effects of some of the undesirable nonzero values in the fourth order autocorrelation function of the input signal are removed. The identification of the dynamics of two-input, single-output systems with multiplicative nonlinearity is investigated. It is shown that the characteristics of such a system may be determined by crosscorrelation experiments using phase-shifted versions of a common signal as inputs. The effects of nonlinearities on the estimates of system weighting functions obtained by crosscorrelation are also investigated. Results obtained by correlation testing of an industrial process are presented, and the differences between theoretical and experimental results discussed for this case;

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A nonlinear dynamic model of microbial growth is established based on the theories of the diffusion response of thermodynamics and the chemotactic response of biology. Except for the two traditional variables, i.e. the density of bacteria and the concentration of attractant, the pH value, a crucial influencing factor to the microbial growth, is also considered in this model. The pH effect on the microbial growth is taken as a Gaussian function G0e-(f- fc)2/G1, where G0, G1 and fc are constants, f represents the pH value and fc represents the critical pH value that best fits for microbial growth. To study the effects of the reproduction rate of the bacteria and the pH value on the stability of the system, three parameters a, G0 and G1 are studied in detail, where a denotes the reproduction rate of the bacteria, G0 denotes the impacting intensity of the pH value to microbial growth and G1 denotes the bacterial adaptability to the pH value. When the effect of the pH value of the solution which microorganisms live in is ignored in the governing equations of the model, the microbial system is more stable with larger a. When the effect of the bacterial chemotaxis is ignored, the microbial system is more stable with the larger G1 and more unstable with the larger G0 for f0 > fc. However, the stability of the microbial system is almost unaffected by the variation G0 and G1 and it is always stable for f0 < fc under the assumed conditions in this paper. In the whole system model, it is more unstable with larger G1 and more stable with larger G0 for f0 < fc. The system is more stable with larger G1 and more unstable with larger G0 for f0 > fc. However, the system is more unstable with larger a for f0 < fc and the stability of the system is almost unaffected by a for f0 > fc. The results obtained in this study provide a biophysical insight into the understanding of the growth and stability behavior of microorganisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose to apply a large predispersion (having the same sign as the transmission fiber) to an optical signal before the uncompensated fiber transmission in coherent communication systems. This technique is aimed at simplifica- tion of the following digital signal processing of nonlinear impairments. We derive a model describing pulse propagation in the dispersion-dominated nonlinear fiber channel. In the limit of very strong initial predispersion, the nonlinear propagation equations for each Fourier mode become local and decoupled. This paves the way for new techniques to manage fiber nonlinearity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem considered is that of determining the shape of a planar acoustically sound-soft obstacle from knowledge of the far-field pattern for one time-harmonic incident field. Two methods, which are based on the solution of a pair of integral equations representing the incoming wave and the far-field pattern, respectively, are proposed and investigated for finding the unknown boundary. Numerical resultsare included which show that the methods give accurate numerical approximations in relatively few iterations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the integrable nonlinear Schrodinger equation (NLSE) as a channel model, we describe the application of nonlinear spectral management for effective mitigation of all nonlinear distortions induced by the fiber Kerr effect. Our approach is a modification and substantial development of the so-called eigenvalue communication idea first presented in A. Hasegawa, T. Nyu, J. Lightwave Technol. 11, 395 (1993). The key feature of the nonlinear Fourier transform (inverse scattering transform) method is that for the NLSE, any input signal can be decomposed into the so-called scattering data (nonlinear spectrum), which evolve in a trivial manner, similar to the evolution of Fourier components in linear equations. We consider here a practically important weakly nonlinear transmission regime and propose a general method of the effective encoding/modulation of the nonlinear spectrum: The machinery of our approach is based on the recursive Fourier-type integration of the input profile and, thus, can be considered for electronic or all-optical implementations. We also present a novel concept of nonlinear spectral pre-compensation, or in other terms, an effective nonlinear spectral pre-equalization. The proposed general technique is then illustrated through particular analytical results available for the transmission of a segment of the orthogonal frequency division multiplexing (OFDM) formatted pattern, and through WDM input based on Gaussian pulses. Finally, the robustness of the method against the amplifier spontaneous emission is demonstrated, and the general numerical complexity of the nonlinear spectrum usage is discussed. © 2013 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work introduces a Gaussian variational mean-field approximation for inference in dynamical systems which can be modeled by ordinary stochastic differential equations. This new approach allows one to express the variational free energy as a functional of the marginal moments of the approximating Gaussian process. A restriction of the moment equations to piecewise polynomial functions, over time, dramatically reduces the complexity of approximate inference for stochastic differential equation models and makes it comparable to that of discrete time hidden Markov models. The algorithm is demonstrated on state and parameter estimation for nonlinear problems with up to 1000 dimensional state vectors and compares the results empirically with various well-known inference methodologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode-locked fiber lasers provide convenient and reproducible experimental settings for the study of a variety of nonlinear dynamical processes. The complex interplay among the effects of gain/loss, dispersion and nonlinearity in a fiber cavity can be used to shape the pulses and manipulate and control the light dynamics and, hence, lead to different mode-locking regimes. Major steps forward in pulse energy and peak power performance of passively mode-locked fiber lasers have been made with the recent discovery of new nonlinear regimes of pulse generation, namely, dissipative solitons in all-normal-dispersion cavities and parabolic self-similar pulses (similaritons) in passive and active fibers. Despite substantial research in this field, qualitatively new phenomena are still being discovered. In this talk, we review recent progress in the research on nonlinear mechanisms of pulse generation in passively mode-locked fiber lasers. These include similariton mode-locking, a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on the possibility of achieving various regimes of advanced temporal waveform generation in a mode-locked fiber laser by inclusion of a spectral filter into the laser cavity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integrability of the nonlinear Schräodinger equation (NLSE) by the inverse scattering transform shown in a seminal work [1] gave an interesting opportunity to treat the corresponding nonlinear channel similar to a linear one by using the nonlinear Fourier transform. Integrability of the NLSE is in the background of the old idea of eigenvalue communications [2] that was resurrected in recent works [3{7]. In [6, 7] the new method for the coherent optical transmission employing the continuous nonlinear spectral data | nonlinear inverse synthesis was introduced. It assumes the modulation and detection of data using directly the continuous part of nonlinear spectrum associated with an integrable transmission channel (the NLSE in the case considered). Although such a transmission method is inherently free from nonlinear impairments, the noisy signal corruptions, arising due to the ampli¯er spontaneous emission, inevitably degrade the optical system performance. We study properties of the noise-corrupted channel model in the nonlinear spectral domain attributed to NLSE. We derive the general stochastic equations governing the signal evolution inside the nonlinear spectral domain and elucidate the properties of the emerging nonlinear spectral noise using well-established methods of perturbation theory based on inverse scattering transform [8]. It is shown that in the presence of small noise the communication channel in the nonlinear domain is the additive Gaussian channel with memory and signal-dependent correlation matrix. We demonstrate that the effective spectral noise acquires colouring", its autocorrelation function becomes slow decaying and non-diagonal as a function of \frequencies", and the noise loses its circular symmetry, becoming elliptically polarized. Then we derive a low bound for the spectral effiency for such a channel. Our main result is that by using the nonlinear spectral techniques one can significantly increase the achievable spectral effiency compared to the currently available methods [9]. REFERENCES 1. Zakharov, V. E. and A. B. Shabat, Sov. Phys. JETP, Vol. 34, 62{69, 1972. 2. Hasegawa, A. and T. Nyu, J. Lightwave Technol., Vol. 11, 395{399, 1993. 3. Yousefi, M. I. and F. R. Kschischang, IEEE Trans. Inf. Theory, Vol. 60, 4312{4328, 2014. 4. Yousefi, M. I. and F. R. Kschischang, IEEE Trans. Inf. Theory, Vol. 60, 4329{4345 2014. 5. Yousefi, M. I. and F. R. Kschischang, IEEE Trans. Inf. Theory, Vol. 60, 4346{4369, 2014. 6. Prilepsky, J. E., S. A. Derevyanko, K. J. Blow, I. Gabitov, and S. K. Turitsyn, Phys. Rev. Lett., Vol. 113, 013901, 2014. 7. Le, S. T., J. E. Prilepsky, and S. K. Turitsyn, Opt. Express, Vol. 22, 26720{26741, 2014. 8. Kaup, D. J. and A. C. Newell, Proc. R. Soc. Lond. A, Vol. 361, 413{446, 1978. 9. Essiambre, R.-J., G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, J. Lightwave Technol., Vol. 28, 662{701, 2010.