17 resultados para Non-uniformly hyperbolic system
em Aston University Research Archive
Resumo:
A novel fibre grating device is demonstrated with tuneable chromatic dispersion slope. The tuning range is 70 to 190 ps/nm and 0 to 25 ps/nm2 for the second and third order dispersion, respectively.
Resumo:
We present a mean-field model of cloud evolution that describes droplet growth due to condensation and collisions and droplet loss due to fallout. The model accounts for the effects of cloud turbulence both in a large-scale turbulent mixing and in a microphysical enhancement of condensation and collisions. The model allows for an effective numerical simulation by a scheme that is conservative in water mass and keeps accurate count of the number of droplets. We first study the homogeneous situation and determine how the rain-initiation time depends on the concentration of cloud condensation nuclei (CCN) and turbulence level. We then consider clouds with an inhomogeneous concentration of CCN and evaluate how the rain initiation time and the effective optical depth vary in space and time. We argue that over-seeding even a part of a cloud by small hygroscopic nuclei, one can substantially delay the onset and increase the amount of precipitation.
Resumo:
Summary form only given. A novel method for tuning the second and the third order dispersion using a simple multi-point bending device has been demonstrated. A simple model has been developed that allows to calculate the exact bending profile required for compensation for the given values of dispersion and dispersion slope.
Resumo:
Summary form only given. A novel method for tuning the second and the third order dispersion using a simple multi-point bending device has been demonstrated. A simple model has been developed that allows to calculate the exact bending profile required for compensation for the given values of dispersion and dispersion slope.
Resumo:
The utilization of solar energy by photovoltaic (PV) systems have received much research and development (R&D) attention across the globe. In the past decades, a large number of PV array have been installed. Since the installed PV arrays often operate in harsh environments, non-uniform aging can occur and impact adversely on the performance of PV systems, especially in the middle and late periods of their service life. Due to the high cost of replacing aged PV modules by new modules, it is appealing to improve energy efficiency of aged PV systems. For this purpose, this paper presents a PV module reconfiguration strategy to achieve the maximum power generation from non-uniformly aged PV arrays without significant investment. The proposed reconfiguration strategy is based on the cell-unit structure of PV modules, the operating voltage limit of gird-connected converter, and the resulted bucket-effect of the maximum short circuit current. The objectives are to analyze all the potential reorganization options of the PV modules, find the maximum power point and express it in a proposition. This proposition is further developed into a novel implementable algorithm to calculate the maximum power generation and the corresponding reconfiguration of the PV modules. The immediate benefits from this reconfiguration are the increased total power output and maximum power point voltage information for global maximum power point tracking (MPPT). A PV array simulation model is used to illustrate the proposed method under three different cases. Furthermore, an experimental rig is built to verify the effectiveness of the proposed method. The proposed method will open an effective approach for condition-based maintenance of emerging aging PV arrays.
Resumo:
The devising of a general engineering theory of multifunctional diagnostic systems for non-invasive medical spectrophotometry is an important and promising direction of modern biomedical engineering. We aim in this study to formalize in scientific engineering terms objectives for multifunctional laser non-invasive diagnostic system (MLNDS). The structure-functional model as well as a task-function of generalized MLNDS was formulated and developed. The key role of the system software for MLNDS general architecture at steps of ideological-technical designing has been proved. The basic principles of block-modules composition of MLNDS hardware are suggested as well. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
Recently, there has been a considerable research activity in extending topographic maps of vectorial data to more general data structures, such as sequences or trees. However, the representational capabilities and internal representations of the models are not well understood. We rigorously analyze a generalization of the Self-Organizing Map (SOM) for processing sequential data, Recursive SOM (RecSOM [1]), as a non-autonomous dynamical system consisting off a set of fixed input maps. We show that contractive fixed input maps are likely to produce Markovian organizations of receptive fields o the RecSOM map. We derive bounds on parameter $\beta$ (weighting the importance of importing past information when processing sequences) under which contractiveness of the fixed input maps is guaranteed.
Resumo:
In the analysis and prediction of many real-world time series, the assumption of stationarity is not valid. A special form of non-stationarity, where the underlying generator switches between (approximately) stationary regimes, seems particularly appropriate for financial markets. We introduce a new model which combines a dynamic switching (controlled by a hidden Markov model) and a non-linear dynamical system. We show how to train this hybrid model in a maximum likelihood approach and evaluate its performance on both synthetic and financial data.
Resumo:
The dramatic effects of brain damage can provide some of the most interesting insights into the nature of normal cognitive performance. In recent years a number of neuropsychological studies have reported a particular form of cognitive impairment where patients have problems recognising objects from one category but remain able to recognise those from others. The most frequent ‘category-specific’ pattern is an impairment identifying living things, compared to nonliving things. The reverse pattern of dissociation, i.e., an impairment recognising and naming nonliving things relative to living things, has been reported albeit much less frequently. The objective of the work carried out in this thesis was to investigate the organising principles and anatomical correlates of stored knowledge for categories of living and nonliving things. Three complementary cognitive neuropsychological research techniques were employed to assess how, and where, this knowledge is represented in the brain: (i) studies of normal (neurologically intact) subjects, (ii) case-studies of neurologically impaired patients with selective deficits in object recognition, and (iii) studies of the anatomical correlates of stored knowledge for living and nonliving things on the brain using magnetoencephalography (MEG). The main empirical findings showed that semantic knowledge about living and nonliving things is principally encoded in terms of sensory and functional features, respectively. In two case-study chapters evidence was found supporting the view that category-specific impairments can arise from damage to a pre-semantic system, rather than the assumption often made that the system involved must be semantic. In the MEG study, rather than finding evidence for the involvement of specific brain areas for different object categories, it appeared that, when subjects named and categorised living and nonliving things, a non-differentiated neural system was involved.
Resumo:
The Alborz Mountain range separates the northern part of Iran from the southern part. It also isolates a narrow coastal strip to the south of the Caspian Sea from the Central Iran plateau. Communication between the south and north until the 1950's was via two roads and one rail link. In 1963 work was completed on a major access road via the Haraz Valley (the most physically hostile area in the region). From the beginning the road was plagued by accidents resulting from unstable slopes on either side of the valley. Heavy casualties persuaded the government to undertake major engineering works to eliminate ''black spots" and make the road safe. However, despite substantial and prolonged expenditure the problems were not solved and casualties increased steadily due to the increase in traffic using the road. Another road was built to bypass the Haraz road and opened to traffic in 1983. But closure of the Haraz road was still impossible because of the growth of settlements along the route and the need for access to other installations such as the Lar Dam. The aim of this research was to explore the possibility of applying Landsat MSS imagery to locating black spots along the road and the instability problems. Landsat data had not previously been applied to highway engineering problems in the study area. Aerial photographs are better in general than satellite images for detailed mapping, but Landsat images are superior for reconnaissance and adequate for mapping at the 1 :250,000 scale. The broad overview and lack of distortion in the Landsat imagery make the images ideal for structural interpretation. The results of Landsat digital image analysis showed that certain rock types and structural features can be delineated and mapped. The most unstable areas comprising steep slopes, free of vegetation cover can be identified using image processing techniques. Structural lineaments revealed from the image analysis led to improved results (delineation of unstable features). Damavand Quaternary volcanics were found to be the dominant rock type along a 40 km stretch of the road. These rock types are inherently unstable and partly responsible for the difficulties along the road. For more detailed geological and morphological interpretation a sample of small subscenes was selected and analysed. A special developed image analysis package was designed at Aston for use on a non specialized computing system. Using this package a new and unique method for image classification was developed, allowing accurate delineation of the critical features of the study area.
Resumo:
We report the impact of longitudinal signal power profile on the transmission performance of coherently-detected 112 Gb/s m-ary polarization multiplexed quadrature amplitude modulation system after compensation of deterministic nonlinear fibre impairments. Performance improvements up to 0.6 dB (Q(eff)) are reported for a non-uniform transmission link power profile. Further investigation reveals that the evolution of the transmission performance with power profile management is fully consistent with the parametric amplification of the amplified spontaneous emission by the signal through four-wave mixing. In particular, for a non-dispersion managed system, a single-step increment of 4 dB in the amplifier gain, with respect to a uniform gain profile, at similar to 2/3(rd) of the total reach considerably improves the transmission performance for all the formats studied. In contrary a negative-step profile, emulating a failure (gain decrease or loss increase), significantly degrades the bit-error rate.
Resumo:
Timing jitter is a major factor limiting the performance of any high-speed, long-haul data transmission system. It arises from a number of reasons, such as interaction with accumulated spontaneous emission, inter-symbol interference (ISI), electrostriction etc. Some effects causing timing jitter can be reduced by means of non-linear filtering, using, for example, a nonlinear optical loop mirror (NOLM) [1]. The NOLM has been shown to reduce the timing jitter by suppressing the ASE and by stabilising the pulse duration [2, 3]. In this paper, we investigate the dynamics of timing jitter in a 2R regenerated system, nonlinearly guided by NOLMs at bit rates of 10, 20, 40, and 80- Gbit/s. Transmission performance of an equivalent non-regenerated (generic) system is taken as a reference.
Resumo:
We report the impact of longitudinal signal power profile on the transmission performance of coherently-detected 112 Gb/s m-ary polarization multiplexed quadrature amplitude modulation system after compensation of deterministic nonlinear fibre impairments. Performance improvements up to 0.6 dB (Q(eff)) are reported for a non-uniform transmission link power profile. Further investigation reveals that the evolution of the transmission performance with power profile management is fully consistent with the parametric amplification of the amplified spontaneous emission by the signal through four-wave mixing. In particular, for a non-dispersion managed system, a single-step increment of 4 dB in the amplifier gain, with respect to a uniform gain profile, at similar to 2/3(rd) of the total reach considerably improves the transmission performance for all the formats studied. In contrary a negative-step profile, emulating a failure (gain decrease or loss increase), significantly degrades the bit-error rate.
Resumo:
Aqueous semi-solid polymeric gels, such as those based on hydroxyethylcellulose (HEC) and polyacrylic acid (e.g. Carbopol®), have a long history of use in vaginal drug delivery. However, despite their ubiquity, they often provide sub-optimal clinical performance, due to poor mucosal retention and limited solubility for poorly water-soluble actives. These issues are particularly pertinent for vaginal HIV microbicides, since many lead candidates are poorly water-soluble and where a major goal is the development of a coitally independent, once daily gel product. In this study, we report the use of a non-aqueous silicone elastomer gel for vaginal delivery of the HIV-1 entry inhibitor maraviroc. In vitro rheological, syringeability and retention studies demonstrated enhanced performance for silicone gels compared with a conventional aqueous HEC gel, while testing of the gels in the slug model confirmed a lack of mucosal irritancy. Pharmacokinetic studies following single dose vaginal administration of a maraviroc silicone gel in rhesus macaques showed higher and sustained MVC levels in vaginal fluid, vaginal tissue and plasma compared with a HEC gel containing the same maraviroc loading. The results demonstrate that non-aqueous silicone gels have potential as a formulation platform for coitally independent vaginal HIV microbicides.
Resumo:
The effects of channel inequality on nonlinear signal switching in a nonlinear optical fiber loop mirror (NOLM) were investigated. It was found that the channel-to-channel amplitude differences in optical time division multiplexing (OTDM) have strong impact on swiching behavior of individual channels in a 2R regenerator. The optical pulses in different channels face either suppression of the amplitude noise or increase in noise, depending on the inter-channel amplitude difference. It was stated that appropriate control of the channel uniformity in the OTDM transmitters is required to support stable long-haul transmission in 2R regenerated systems.