15 resultados para Non-magnetic Nanosized Spinel Oxides
em Aston University Research Archive
Resumo:
The object of this work was to further develop the idea introduced by Muaddi et al (1981) which enables some of the disadvantages of earlier destructive adhesion test methods to be overcome. The test is non-destructive in nature but it does need to be calibrated against a destructive method. Adhesion is determined by measuring the effect of plating on internal friction. This is achieved by determining the damping of vibrations of a resonating specimen before and after plating. The level of adhesion was considered by the above authors to influence the degree of damping. In the major portion of the research work the electrodeposited metal was Watt's nickel, which is ductile in nature and is therefore suitable for peel adhesion testing. The base metals chosen were aluminium alloys S1C and HE9 as it is relatively easy to produce varying levels of adhesion between the substrate and electrodeposited coating by choosing the appropriate process sequence. S1C alloy is the commercially pure aluminium and was used to produce good adhesion. HE9 aluminium alloy is a more difficult to plate alloy and was chosen to produce poorer adhesion. The "Modal Testing" method used for studying vibrations was investigated as a possible means of evaluating adhesion but was not successful and so research was concentrated on the "Q" meter. The method based on the use of a "Q" meter involves the principle of exciting vibrations in a sample, interrupting the driving signal and counting the number of oscillations of the freely decaying vibrations between two known preselected amplitudes of oscillations. It was not possible to reconstruct a working instrument using Muaddi's thesis (1982) as it had either a serious error or the information was incomplete. Hence a modified "Q" meter had to be designed and constructed but it was then difficult to resonate non-magnetic materials, such as aluminium, therefore, a comparison before and after plating could not be made. A new "Q" meter was then developed based on an Impulse Technique. A regulated miniature hammer was used to excite the test piece at the fundamental mode instead of an electronic hammer and test pieces were supported at the two predetermined nodal points using nylon threads. This instrument developed was not very successful at detecting changes due to good and poor pretreatments given before plating, however, it was more sensitive to changes at the surface such as room temperature oxidation. Statistical analysis of test results from untreated aluminium alloys show that the instrument is not always consistent, the variation was even bigger when readings were taken on different days. Although aluminium is said to form protective oxides at room temperature there was evidence that the aluminium surface changes continuously due to film formation, growth and breakdown. Nickel plated and zinc alloy immersion coated samples also showed variation in Q with time. In order to prove that the variations in Q were mainly due to surface oxidation, aluminium samples were lacquered and anodised Such treatments enveloped the active surfaces reacting with the environment and the Q variation with time was almost eliminated especially after hard anodising. This instrument detected major differences between different untreated aluminium substrates.Also Q values decreased progressively as coating thicknesses were increased. This instrument was also able to detect changes in Q due to heat-treatment of aluminium alloys.
Resumo:
This thesis investigates the mechanisms that lead to pole tip recession (PTR) in laminated magnetic recording heads (also known as "sandwich heads"). These heads provide a platform for the utilisation of advanced soft magnetic thin films in practical recording heads suitable for high frequency helical scan tape recording systems. PTR results from a differential wear of the magnetic pole piece from the tape-bearing surface of the head. It results in a spacing loss of the playback or read signal of 54.6dB per recording wavelength separation of the poles from the tape. PTR depends on the material combination used in the head, on the tape type and the climate - temperature and relative humidity (r.h.). Five head materials were studied: two non-magnetic substrate materials- sintered multi granular CaTi03 and composite CaTi03/ZrTi04/Ti02 and three soft magnetic materials- amorphous CoNbZr, and nanocrystalline FeNbSiN and FeTaN. Single material dummy heads were constructed and their wear rates measured when cycling them in a Hi-8 camcorder against commercially available metal particulate (MP) and metal evaporated (ME) tapes in three different climates: 25°C/20%r.h., 25°C/80%r.h. and 40°C/80%r.h. X-ray photoelectron spectroscopy (XPS) was used to examine changes the head surface chemistry. Atomic force microscopy (AFM) was used to examine changes in head and tape surface topography. PTR versus cycling time of laminated heads of CaTi03/ZrTiO4/Ti02 and FeTaN construction was measured using AFM. The principal wear mechanism observed for all head materials was microabrasion caused by the mating body - the tape surface. The variation in wear rate with climate and tape type was due to a variation in severity in this mechanism, except for tape cycling at 40°C in which gross damage was observed to be occurring to the head surface. Two subsidiary wear mechanisms were found: third body scratching (all materials) and grain pullout (both ceramics and FeNbSiN). No chemical wear was observed, though tribochemical reactions were observed on the metal head surfaces. PTR was found to be caused by two mechanisms - the first differential microabrasion of the metal and substrate materials and which was characterised by a low (~10nm) equilibrium value. The second was by deep ploughing by third body debris particles, thought mainly to be grain pullout particles. This level of PTR caused by this mechanism was often more severe, and of a non-equilibrium nature. It was observed more for ME tape, especially at 40°C/80%r.h. and 25°c/20%r.h. Two other phenomena on the laminated head pole piece were observed and commented upon: staining and ripple texturing.
Resumo:
Blurring a pattern reversal stimulus increases the latency and decreases the amplitude of the visual evoked potential (VEP) P100 peak. Recording the visual evoked magnetic response (VEMR) is some subjects may therefore be difficult because their spectacles create excessive magnetic noise. Hence, the effect of varying degrees of blur (-5 to +5 D) on the VEMR was investigated in three subjects with 6/6 vision to determine whether refraction with non-magnetic frames and lenses was necessary before magnetic recording. Small (32') and larger (70') checks were studied since there is evidence that blurring small checks has a more significant effect on the VEP compared with large checks. The VEMR was recorded using a single channel dc-SQUID, second order gradiometer in an unshielded laboratory. The latency (ms) and amplitude (fT) of the most prominant positive peak within the first 130 ms (P100M) were measured. Blurring the 32' checks significantly increased latency aand reduced the amplitude of the P100M peak. The resulting response curves were parabolic with minimum latency and maximum amplitude recorded at 0 D. Blurring the 70' check had no significant effect on latency or amplitude. Hence, the magnetic P100M responds similarly to the electrical P100 in response to blur. It would be essential when recording the VEMR that vision is corrected with non-magnetic spectacles especially when small checks are used.
Resumo:
The chromium chalcogenide spinels, MCr2X4 (M = Zn, Cd, Hg; X = O, S, Se), have been the subject of considerable interest in recent years. In each case the crystal structure is that of a normal spinel with the chromium ions exclusively occupying the octahedral (B) sites, so that when diamagnetic ions are located at the tetrahedral (A) sites the only magnetic interactions present are those between B-site ions. Despite such apparently simple circumstances a rich variety of magnetic behaviour is exhibited. For the oxides the ground state spin configurations are antiferromagnetic whilst for the selenides ferromagnetic interactions dominate and several authors have drawn attention to the fact that the nature of the dominant interaction is a function of the nearest neighbour chromium - chromium separation. However, at least two of the compounds exhibit spiral structures and it has been proved difficult to account for the various spin configurations within a unified theory of the magnetic interactions involved. More recently, the possibility of formulating a simplified interpretation of the magnetic interactions has been provided by the discovery that the crystal struture of spinels does not always conform to the centrosymmetrical symmetry Fd3m that has been conventionally assumed. The deviation from this symmetry is associated with small < 111> displacements of the octahedrally coordinated metal ions and the structures so obtained are more correctly referred to the non-centrosymmetrical space group F43m. In the present study, therefore, extensive X-ray diffraction data have been collected from four chromium chalcogenide specimens and used to refine the corresponding structural parameters assuming F43m symmetry and also with conventional symmetry. The diffracted intensities from three of the compounds concerned cannot be satisfactorily accounted for on the basis of conventional symmetry and new locations have been found for the chromium ions in these cases. It is shown, however, that these displacements in chromium positions only partially resolve the difficulties in interpreting the magnetic behaviour. A re-examination of the magnetic data from different authors indicates much greater uncertainty in their measurements than they had claimed. By taking this into consideration it is shown that a unified theory of magnetic behaviour for the chromium chalcogenide spinels is a real possibility.
Resumo:
This thesis describes an experimental and analytic study of the effects of magnetic non-linearity and finite length on the loss and field distribution in solid iron due to a travelling mmf wave. In the first half of the thesis, a two-dimensional solution is developed which accounts for the effects of both magnetic non-linearity and eddy-current reaction; this solution is extended, in the second half, to a three-dimensional model. In the two-dimensional solution, new equations for loss and flux/pole are given; these equations contain the primary excitation, the machine parameters and factors describing the shape of the normal B-H curve. The solution applies to machines of any air-gap length. The conditions for maximum loss are defined, and generalised torque/frequency curves are obtained. A relationship between the peripheral component of magnetic field on the surface of the iron and the primary excitation is given. The effects of magnetic non-linearity and finite length are combined analytically by introducing an equivalent constant permeability into a linear three-dimensional analysis. The equivalent constant permeability is defined from the non-linear solution for the two-dimensional magnetic field at the axial centre of the machine to avoid iterative solutions. In the linear three-dimensional analysis, the primary excitation in the passive end-regions of the machine is set equal to zero and the secondary end faces are developed onto the air-gap surface. The analyses, and the assumptions on which they are based, were verified on an experimental machine which consists of a three-phase rotor and alternative solid iron stators, one with copper end rings, and one without copper end rings j the main dimensions of the two stators are identical. Measurements of torque, flux /pole, surface current density and radial power flow were obtained for both stators over a range of frequencies and excitations. Comparison of the measurements on the two stators enabled the individual effects of finite length and saturation to be identified, and the definition of constant equivalent permeability to be verified. The penetration of the peripheral flux into the stator with copper end rings was measured and compared with theoretical penetration curves. Agreement between measured and theoretical results was generally good.
Resumo:
The thesis is divided into four chapters. They are: introduction, experimental, results and discussion about the free ligands and results and discussion about the complexes. The First Chapter, the introductory chapter, is a general introduction to the study of solid state reactions. The Second Chapter is devoted to the materials and experimental methods that have been used for carrying out tile experiments. TIle Third Chapter is concerned with the characterisations of free ligands (Picolinic acid, nicotinic acid, and isonicotinic acid) by using elemental analysis, IR spectra, X-ray diffraction, and mass spectra. Additionally, the thermal behaviour of free ligands in air has been studied by means of thermogravimetry (TG), derivative thermogravimetry (DTG), and differential scanning calorimetry (DSC) measurements. The behaviour of thermal decomposition of the three free ligands was not identical Finally, a computer program has been used for kinetic evaluation of non-isothermal differential scanning calorimetry data according to a composite and single heating rate methods in comparison with the methods due to Ozawa and Kissinger methods. The most probable reaction mechanism for the free ligands was the Avrami-Erofeev equation (A) that described the solid-state nucleation-growth mechanism. The activation parameters of the decomposition reaction for free ligands were calculated and the results of different methods of data analysis were compared and discussed. The Fourth Chapter, the final chapter, deals with the preparation of cobalt, nickel, and copper with mono-pyridine carboxylic acids in aqueous solution. The prepared complexes have been characterised by analyses, IR spectra, X-ray diffraction, magnetic moments, and electronic spectra. The stoichiometry of these compounds was ML2x(H20), (where M = metal ion, L = organic ligand and x = water molecule). The environments of cobalt, nickel, and copper nicotinates and the environments of cobalt and nickel picolinates were octahedral, whereas the environment of copper picolinate [Cu(PA)2] was tetragonal. However, the environments of cobalt, nickel, and copper isonicotinates were polymeric octahedral structures. The morphological changes that occurred throughout the decomposition were followed by SEM observation. TG, DTG, and DSC measurements have studied the thermal behaviour of the prepared complexes in air. During the degradation processes of the hydrated complexes, the crystallisation water molecules were lost in one or two steps. This was also followed by loss of organic ligands and the metal oxides remained. Comparison between the DTG temperatures of the first and second steps of the dehydration suggested that the water of crystallisation was more strongly bonded with anion in Ni(II) complexes than in the complexes of Co(II) and Cu(II). The intermediate products of decomposition were not identified. The most probable reaction mechanism for the prepared complexes was also Avrami-Erofeev equation (A) characteristic of solid-state nucleation-growth mechanism. The tempemture dependence of conductivity using direct current was determined for cobalt, nickel, Cl.nd copper isonicotinates. An activation energy (ΔΕ), the activation energy (ΔΕ ) were calculated.The ternperature and frequency dependence of conductivity, the frequency dependence of dielectric constant, and the dielectric loss for nickel isonicotinate were determined by using altemating current. The value of s paralneter and the value of'density of state [N(Ef)] were calculated. Keyword Thermal decomposition, kinetic, electrical conduclion, pyridine rnono~ carboxylic acid, cOlnplex, transition metal compJex.
Resumo:
Non-intrusive monitoring of health state of induction machines within industrial process and harsh environments poses a technical challenge. In the field, winding failures are a major fault accounting for over 45% of total machine failures. In the literature, many condition monitoring techniques based on different failure mechanisms and fault indicators have been developed where the machine current signature analysis (MCSA) is a very popular and effective method at this stage. However, it is extremely difficult to distinguish different types of failures and hard to obtain local information if a non-intrusive method is adopted. Typically, some sensors need to be installed inside the machines for collecting key information, which leads to disruption to the machine operation and additional costs. This paper presents a new non-invasive monitoring method based on GMRs to measure stray flux leaked from the machines. It is focused on the influence of potential winding failures on the stray magnetic flux in induction machines. Finite element analysis and experimental tests on a 1.5-kW machine are presented to validate the proposed method. With time-frequency spectrogram analysis, it is proven to be effective to detect several winding faults by referencing stray flux information. The novelty lies in the implement of GMR sensing and analysis of machine faults.
Resumo:
The purpose of this investigation was to design a novel magnetic drive and bearing system for a new centrifugal rotary blood pump (CRBP). The drive system consists of two components: (i) permanent magnets within the impeller of the CRBP; and (ii) the driving electromagnets. Orientation of the magnets varies from axial through to 60° included out-lean (conical configuration). Permanent magnets replace the electromagnet drive to allow easier characterization. The performance characteristics tested were the axial force of attraction between the stator and rotor at angles of rotational alignment, Ø, and the corresponding torque at those angles. The drive components were tested for various magnetic cone angles, ?. The test was repeated for three backing conditions: (i) non-backed; (ii) steel-cupped; and (iii) steel plate back-iron, performed on an Instron tensile testing machine. Experimental results were expanded upon through finite element and boundary element analysis (BEM). The force/torque characteristics were maximal for a 12-magnet configuration at 0° cone angle with steel-back iron (axial force = 60 N, torque = 0.375 Nm). BEM showed how introducing a cone angle increases the radial restoring force threefold while not compromising axial bearing force. Magnets in the drive system may be orientated not only to provide adequate coupling to drive the CRBP, but to provide significant axial and radial bearing forces capable of withstanding over 100 m/s2 shock excitation on the impeller. Although the 12 magnet 0° (?) configuration yielded the greatest force/torque characteristic, this was seen as potentially unattractive as this magnetic cone angle yielded poor radial restoring force characteristics.
Resumo:
Fe{HB(CHN)} is observed by variable temperature infrared and magnetic studies to have a spin transition between the low spin S = 0 and high spin S = 2 states at 331 K (58 °C) with thermal hysteresis of ~1.5 K. Changes in the triazole ligand IR absorptions demonstrate that distant non-metal-ligand vibrations are altered upon the change in electronic structure associated with the spin-crossover can be used to monitor the the spin-crossover transition.
Resumo:
This thesis is concerned with the investigation, by nuclear magnetic resonance spectroscopy, of the molecular interactions occurring in mixtures of benzene and cyclohexane to which either chloroform or deutero-chloroform has been added. The effect of the added polar molecule on the liquid structure has been studied using spin-lattice relaxation time, 1H chemical shift, and nuclear Overhauser effect measurements. The main purpose of the work has been to validate a model for molecular interaction involving local ordering of benzene around chloroform. A chemical method for removing dissolved oxygen from samples has been developed to encompass a number of types of sample, including quantitative mixtures, and its supremacy over conventional deoxygenation technique is shown. A set of spectrometer conditions, the use of which produces the minimal variation in peak height in the steady state, is presented. To separate the general diluting effects of deutero-chloroform from its effects due to the production of local order a series of mixtures involving carbon tetrachloride, instead of deutero-chloroform, have been used as non-interacting references. The effect of molecular interaction is shown to be explainable using a solvation model, whilst an approach involving 1:1 complex formation is shown not to account for the observations. It is calculated that each solvation shell, based on deutero-chloroform, contains about twelve molecules of benzene or cyclohexane. The equations produced to account for the T1 variations have been adapted to account for the 1H chemical shift variations in the same system. The shift measurements are shown to substantiate the solvent cage model with a cage capacity of twelve molecules around each chloroform molecule. Nuclear Overhauser effect data have been analysed quantitatively in a manner consistent with the solvation model. The results show that discrete shells only exist when the mole fraction of deutero-chloroform is below about 0.08.
Resumo:
The thesis is concerned with the electron properties of single-polepiece magnetic electron lenses especially under conditions of extreme polepiece saturation. The electron optical properties are first analysed under conditions of high polepiece permeability. From this analysis, a general idea can be obtained of the important parameters that affect ultimate lens performance. In addition, useful information is obtained concerning the design of improved lenses operating under conditions of extreme polepiece saturation, for example at flux densities of the order of 10 Tesla. It is shown that in a single-polepiece lens , the position and shape of the lens exciting coil plays an important role. In particular, the maximum permissible current density in the windings,rather than the properties of the iron, can set a limit to lens performance. This factor was therefore investigated in some detail. The axial field distribution of a single-polepiece lens, unlike that of a conventional lens, is highly asymmetrical. There are therefore two possible physical arrangements of the lens with respect to the incoming electron beam. In general these two orientations will result in different aberration coefficients. This feature has also been investigated in some detail. Single-pole piece lenses are thus considerably more complicated electron- optically than conventional double polepiece lenses. In particular, the absence of the usual second polepiece causes most of the axial magnetic flux density distribution to lie outside the body of the lens. This can have many advantages in electron microscopy but it creates problems in calculating the magnetic field distribution. In particular, presently available computer programs are liable to be considerably in error when applied to such structures. It was therefore necessary to find independent ways of checking the field calculations. Furthermore, if the polepiece is allowed to saturate, much more calculation is involved since the field distribution becomes a non-linear function of the lens excitation. In searching for optimum lens designs, care was therefore taken to ensure that the coil was placed in the optimum position. If this condition is satisfied there seems to be no theoretical limit to the maximum flux density that can be attained at the polepiece tip. However , under iron saturation condition, some broadening of the axial field distribution will take place, thereby changing the lens aberrations . Extensive calculations were therefore made to find the minimum spherical and chromatic aberration coefficients . The focal properties of such lens designs are presented and compared with the best conventional double-polepiece lenses presently available.
Resumo:
A novel device for the detection and characterisation of static magnetic fields is presented. It consists of a femtosecond laser inscribed fibre Bragg grating (FBG) that is incorporated into an optical fibre with a femtosecond laser micromachined slot. The symmetry of the fibre is broken by the micro-slot, producing non-uniform strain across the fibre cross section. The sensing region is coated with Terfenol-D making the device sensitive to static magnetic fields, whereas the symmetry breaking results in a vectorial sensor for the detection of magnetic fields as low as 0.046 mT with a resolution of ±0.3mT in transmission and ±0.7mT in reflection. The sensor output is directly wavelength encoded from the FBG filtering, leading to simple demodulation through the monitoring of wavelength shifts that result as the fibre structure changes shape in response to the external magnetic field. The use of a femtosecond laser to both inscribe the FBG and micro-machine the slot in a single stage, prior to coating the device, significantly simplifies the sensor fabrication.
Resumo:
A novel device for the detection and characterisation of static magnetic fields is presented. It consists of a femtosecond laser inscribed fibre Bragg grating (FBG) that is incorporated into an optical fibre with a femtosecond laser micromachined slot. The symmetry of the fibre is broken by the micro-slot, producing non-uniform strain across the fibre cross section. The sensing region is coated with Terfenol-D making the device sensitive to static magnetic fields, whereas the symmetry breaking results in a vectorial sensor for the detection of magnetic fields as low as 0.046 mT with a resolution of ±0.3mT in transmission and ±0.7mT in reflection. The sensor output is directly wavelength encoded from the FBG filtering, leading to simple demodulation through the monitoring of wavelength shifts that result as the fibre structure changes shape in response to the external magnetic field. The use of a femtosecond laser to both inscribe the FBG and micro-machine the slot in a single stage, prior to coating the device, significantly simplifies the sensor fabrication.
Resumo:
For a Switched Reluctance Motor (SRM), the flux linkage characteristic is the most basic magnetic characteristic, and many other quantities, including the incremental inductance, back emf, and electromagnetic torque can be determined indirectly from it. In this paper, two methods of measuring the flux linkage profile of an SRM from the phase winding voltage and current measurements, with and without rotor locking devices, are presented. Torque, incremental inductance and back emf characteristics of the SRM are then obtained from the flux linkage measurements. The torque of the SRM is also measured directly as a comparison, and the closeness of the calculated and directly measured torque curves suggests the validity of the method to obtain the SRM torque, incremental inductance and back emf profiles from the flux linkage measurements. © 2013 IEEE.
Resumo:
The ventrolateral prefrontal cortex (vlPFC) has been implicated in studies of both executive and social functions. Recent meta-analyses suggest that vlPFC plays an important but little understood role in Theory of Mind (ToM). Converging neuropsychological and functional Magnetic Resonance Imaging (fMRI) evidence suggests that this may reflect inhibition of self-perspective. The present study adapted an extensively published ToM localizer to evaluate the role of vlPFC in inhibition of self-perspective. The classic false belief, false photograph vignettes that comprise the localizer were modified to generate high and low salience of self-perspective. Using a factorial design, the present study identified a behavioural and neural cost associated with having a highly salient self-perspective that was incongruent with the representational content. Importantly, vlPFC only differentiated between high versus low salience of self-perspective when representing mental state content. No difference was identified for non-mental representation. This result suggests that different control processes are required to represent competing mental and non-mental content.