6 resultados para Non-dominant limb

em Aston University Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cyclic change in hormonal profiles between the two main phases of the menstrual cycle mediate shifts in mate preference. Males who advertise social dominance are preferred over other men by females in the follicular phase of the cycle. The present study explored assignment of high or low status resources to dominant looking men by females in either phase of the menstrual cycle. Thirteen females who reported that they were free from any kind of hormonal intervention and experienced a 28 day cycle, were invited to participate in a mock job negotiation scenario. Participants were asked to assign either a minimum, low, high or maximum social status job package to a series of male 'employees' that were previously rated to look either dominant or non-dominant. The results showed that during the follicular phase of the cycle participants assigned dominant looking men more high status job resources than the non-dominant looking men. However, during the luteal phase the participants assigned low status resources to the non-dominant looking men. Females are not merely passive observers of male status cues but actively manipulate the environment to assign status. © 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sensorimotor synchronization is hypothesized to arise through two different processes, associated with continuous or discontinuous rhythmic movements. This study investigated synchronization of continuous and discontinuous movements to different pacing signals (auditory or visual), pacing interval (500, 650, 800, 950 ms) and across effectors (non-dominant vs. non-dominant hand). The results showed that mean and variability of asynchronization errors were consistently smaller for discontinuous movements compared to continuous movements. Furthermore, both movement types were timed more accurately with auditory pacing compared to visual pacing and were more accurate with the dominant hand. Shortening the pacing interval also improved sensorimotor synchronization accuracy in both continuous and discontinuous movements. These results show the dependency of temporal control of movements on the nature of the motor task, the type and rate of extrinsic sensory information as well as the efficiency of the motor actuators for sensory integration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Artifact selection decisions typically involve the selection of one from a number of possible/candidate options (decision alternatives). In order to support such decisions, it is important to identify and recognize relevant key issues of problem solving and decision making (Albers, 1996; Harris, 1998a, 1998b; Jacobs & Holten, 1995; Loch & Conger, 1996; Rumble, 1991; Sauter, 1999; Simon, 1986). Sauter classifies four problem solving/decision making styles: (1) left-brain style, (2) right-brain style, (3) accommodating, and (4) integrated (Sauter, 1999). The left-brain style employs analytical and quantitative techniques and relies on rational and logical reasoning. In an effort to achieve predictability and minimize uncertainty, problems are explicitly defined, solution methods are determined, orderly information searches are conducted, and analysis is increasingly refined. Left-brain style decision making works best when it is possible to predict/control, measure, and quantify all relevant variables, and when information is complete. In direct contrast, right-brain style decision making is based on intuitive techniques—it places more emphasis on feelings than facts. Accommodating decision makers use their non-dominant style when they realize that it will work best in a given situation. Lastly, integrated style decision makers are able to combine the left- and right-brain styles—they use analytical processes to filter information and intuition to contend with uncertainty and complexity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: Although significant amounts of vertical misalignment could have a noticeable effect on visual performance, there is no conclusive evidence about the effect of very small amount of vertical disparity on stereopsis and binocular vision. Hence, the aim of this study was to investigate the effects of induced vertical disparity on local and global stereopsis at near. Materials and Methods: Ninety participants wearing best-corrected refraction had local and global stereopsis tested with 0.5 and 1.0 prism diopter (Δ) vertical prism in front of their dominant and non-dominant eye in turn. This was compared to local and global stereopsis in the same subjects without vertical prism. Data were analyzed in SPSS.17 software using the independent samples T and the repeated measures ANOVA tests. Results: Induced vertical disparity decreases local and global stereopsis. This reduction is greater when vertical disparity is induced in front of the non-dominant eye and affects global more than local stereopsis. Repeated measures ANOVA showed differences in the mean stereopsis between the different measured states for local and global values. Local stereopsis thresholds were reduced by 10s of arc or less on average with 1.0Δ of induced vertical prism in front of either eye. However, global stereopsis thresholds were reduced by over 100s of arc by the same 1.0Δ of induced vertical prism. Conclusion: Induced vertical disparity affects global stereopsis thresholds by an order of magnitude (or a factor of 10) more than local stereopsis. Hence, using a test that measures global stereopsis such as the TNO is more sensitive to vertical misalignment than a test such as the Stereofly that measures local stereopsis. © 2014 Informa Healthcare USA, Inc. All rights reserved: reproduction in whole or part not permitted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Artifact selection decisions typically involve the selection of one from a number of possible/candidate options (decision alternatives). In order to support such decisions, it is important to identify and recognize relevant key issues of problem solving and decision making (Albers, 1996; Harris, 1998a, 1998b; Jacobs & Holten, 1995; Loch & Conger, 1996; Rumble, 1991; Sauter, 1999; Simon, 1986). Sauter classifies four problem solving/decision making styles: (1) left-brain style, (2) right-brain style, (3) accommodating, and (4) integrated (Sauter, 1999). The left-brain style employs analytical and quantitative techniques and relies on rational and logical reasoning. In an effort to achieve predictability and minimize uncertainty, problems are explicitly defined, solution methods are determined, orderly information searches are conducted, and analysis is increasingly refined. Left-brain style decision making works best when it is possible to predict/control, measure, and quantify all relevant variables, and when information is complete. In direct contrast, right-brain style decision making is based on intuitive techniques—it places more emphasis on feelings than facts. Accommodating decision makers use their non-dominant style when they realize that it will work best in a given situation. Lastly, integrated style decision makers are able to combine the left- and right-brain styles—they use analytical processes to filter information and intuition to contend with uncertainty and complexity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glutaredoxin-1 (Glrx) is a cytosolic enzyme that regulates diverse cellular function by removal of GSH adducts from S-glutathionylated proteins including signaling molecules and transcription factors. Glrx is up-regulated during inflammation and diabetes. Glrx overexpression inhibits VEGF-induced endothelial cell (EC) migration. The aim was to investigate the role of up-regulated Glrx in EC angiogenic capacities and in vivo revascularization in the setting of hind limb ischemia. Glrx overexpressing EC from Glrx transgenic mice (TG) showed impaired migration and network formation and secreted higher level of soluble VEGF receptor 1 (sFlt), an antagonizing factor to VEGF. After hind limb ischemia surgery Glrx TG mice demonstrated impaired blood flow recovery, associated with lower capillary density and poorer limb motor function compared to wild type littermates. There were also higher levels of anti-angiogenic sFlt expression in the muscle and plasma of Glrx TG mice after surgery. Non-canonical Wnt5a is known to induce sFlt. Wnt5a was highly expressed in ischemic muscles and EC from Glrx TG mice, and exogenous Wnt5a induced sFlt expression and inhibited network formation in human microvascular EC. Adenoviral Glrx-induced sFlt in EC was inhibited by a competitive Wnt5a inhibitor. Furthermore, Glrx overexpression removed GSH adducts on p65 in ischemic muscle and EC, and enhanced nuclear factor kappa B (NF-kB) activity which was responsible for Wnt5a-sFlt induction. Taken together, up-regulated Glrx induces sFlt in EC via NF-kB -dependent Wnt5a, resulting in attenuated revascularization in hind limb ischemia. The Glrx-induced sFlt may be a part of mechanism of redox regulated VEGF signaling.