1 resultado para Non-alcoholic
em Aston University Research Archive
Resumo:
High-performance liquid chromatographic methods are developed for the simultaneous determination of various salicylates, their p-hydroxy isomers and nicotinic acid esters. The method is sensitive enough to detect trace amounts (~µM/L)of the product generated from cross reactivity between the drugs and the vehicle. The developed method also allows analysis of various topical products containing salicylate and nicotinate esters in their formulations. Applying this method, the degradation profiles of salicylates, nicotinates, p-hydroxy benzoate, o-methoxy benzoate and aspirin prodrugs in alkaline media are determined. The profile for alkyl salicylate degradation is found to be first order (A---? B) When the alcoholic radical is similar to that of the ester. In alcohol having a radical different from that of the ester function, the degradation is found to proceed through competitive transesterification and hydrolysis. The intermediates are identified following synthesis and isolation. The rate and extent of transesterification depends on the proportion of alcohol present in the system. Equations are presented to model the time profiles of reactant and product concentration. The reactions are base catalysed and the predominant pathway involves a concerted solvent attack upon the salicylate anion. Competitive hydrolysis of both ester components also follows this mechanism at moderate pH values but rates increase under strongly alkaline conditions as direct hydroxide attack becomes significant. In contrast, transesterification is independent of base concentration once full ionization is accomplished. The competitive hydrolysis is modelled using equations involving the dielectric constant of the medium. A range of other esters are also shown to undergo base-catalysed transesterification. In non-alcoholic solution phenyl salicylate undergoes a concentration-dependent oligomerisation which yields salsalate among the products. Competitive transesterification and hydrolysis also occur in products for topical use which have vehicles based upon alcohol, glycol or glycol polymers. Such reactions may compromise stability assessments, pharmaceutical integrity and delivery profiles.