12 resultados para Non isothermal kinetic
em Aston University Research Archive
Resumo:
Algae are a new potential biomass for energy production but there is limited information on their pyrolysis and kinetics. The main aim of this thesis is to investigate the pyrolytic behaviour and kinetics of Chlorella vulgaris, a green microalga. Under pyrolysis conditions, these microalgae show their comparable capabilities to terrestrial biomass for energy and chemicals production. Also, the evidence from a preliminary pyrolysis by the intermediate pilot-scale reactor supports the applicability of these microalgae in the existing pyrolysis reactor. Thermal decomposition of Chlorella vulgaris occurs in a wide range of temperature (200-550°C) with multi-step reactions. To evaluate the kinetic parameters of their pyrolysis process, two approaches which are isothermal and non-isothermal experiments are applied in this work. New developed Pyrolysis-Mass Spectrometry (Py-MS) technique has the potential for isothermal measurements with a short run time and small sample size requirement. The equipment and procedure are assessed by the kinetic evaluation of thermal decomposition of polyethylene and lignocellulosic derived materials (cellulose, hemicellulose, and lignin). In the case of non-isothermal experiment, Thermogravimetry- Mass Spectrometry (TG-MS) technique is used in this work. Evolved gas analysis provides the information on the evolution of volatiles and these data lead to a multi-component model. Triplet kinetic values (apparent activation energy, pre-exponential factor, and apparent reaction order) from isothermal experiment are 57 (kJ/mol), 5.32 (logA, min-1), 1.21-1.45; 9 (kJ/mol), 1.75 (logA, min-1), 1.45 and 40 (kJ/mol), 3.88 (logA, min-1), 1.45- 1.15 for low, middle and high temperature region, respectively. The kinetic parameters from non-isothermal experiment are varied depending on the different fractions in algal biomass when the range of apparent activation energies are 73-207 (kJ/mol); pre-exponential factor are 5-16 (logA, min-1); and apparent reaction orders are 1.32–2.00. The kinetic procedures reported in this thesis are able to be applied to other kinds of biomass and algae for future works.
Resumo:
The thesis is divided into four chapters. They are: introduction, experimental, results and discussion about the free ligands and results and discussion about the complexes. The First Chapter, the introductory chapter, is a general introduction to the study of solid state reactions. The Second Chapter is devoted to the materials and experimental methods that have been used for carrying out tile experiments. TIle Third Chapter is concerned with the characterisations of free ligands (Picolinic acid, nicotinic acid, and isonicotinic acid) by using elemental analysis, IR spectra, X-ray diffraction, and mass spectra. Additionally, the thermal behaviour of free ligands in air has been studied by means of thermogravimetry (TG), derivative thermogravimetry (DTG), and differential scanning calorimetry (DSC) measurements. The behaviour of thermal decomposition of the three free ligands was not identical Finally, a computer program has been used for kinetic evaluation of non-isothermal differential scanning calorimetry data according to a composite and single heating rate methods in comparison with the methods due to Ozawa and Kissinger methods. The most probable reaction mechanism for the free ligands was the Avrami-Erofeev equation (A) that described the solid-state nucleation-growth mechanism. The activation parameters of the decomposition reaction for free ligands were calculated and the results of different methods of data analysis were compared and discussed. The Fourth Chapter, the final chapter, deals with the preparation of cobalt, nickel, and copper with mono-pyridine carboxylic acids in aqueous solution. The prepared complexes have been characterised by analyses, IR spectra, X-ray diffraction, magnetic moments, and electronic spectra. The stoichiometry of these compounds was ML2x(H20), (where M = metal ion, L = organic ligand and x = water molecule). The environments of cobalt, nickel, and copper nicotinates and the environments of cobalt and nickel picolinates were octahedral, whereas the environment of copper picolinate [Cu(PA)2] was tetragonal. However, the environments of cobalt, nickel, and copper isonicotinates were polymeric octahedral structures. The morphological changes that occurred throughout the decomposition were followed by SEM observation. TG, DTG, and DSC measurements have studied the thermal behaviour of the prepared complexes in air. During the degradation processes of the hydrated complexes, the crystallisation water molecules were lost in one or two steps. This was also followed by loss of organic ligands and the metal oxides remained. Comparison between the DTG temperatures of the first and second steps of the dehydration suggested that the water of crystallisation was more strongly bonded with anion in Ni(II) complexes than in the complexes of Co(II) and Cu(II). The intermediate products of decomposition were not identified. The most probable reaction mechanism for the prepared complexes was also Avrami-Erofeev equation (A) characteristic of solid-state nucleation-growth mechanism. The tempemture dependence of conductivity using direct current was determined for cobalt, nickel, Cl.nd copper isonicotinates. An activation energy (ΔΕ), the activation energy (ΔΕ ) were calculated.The ternperature and frequency dependence of conductivity, the frequency dependence of dielectric constant, and the dielectric loss for nickel isonicotinate were determined by using altemating current. The value of s paralneter and the value of'density of state [N(Ef)] were calculated. Keyword Thermal decomposition, kinetic, electrical conduclion, pyridine rnono~ carboxylic acid, cOlnplex, transition metal compJex.
Resumo:
Reversed-pahse high-performance liquid chromatographic (HPLC) methods were developed for the assay of indomethacin, its decomposition products, ibuprofen and its (tetrahydro-2-furanyl)methyl-, (tetrahydro-2-(2H)pyranyl)methyl- and cyclohexylmethyl esters. The development and application of these HPLC systems were studied. A number of physico-chemical parameters that affect percutaneous absorption were investigated. The pKa values of indomethacin and ibuprofen were determined using the solubility method. Potentiometric titration and the Taft equation were also used for ibuprofen. The incorporation of ethanol or propylene glycol in the solvent resulted in an improvement in the aqueous solubility of these compounds. The partition coefficients were evaluated in order to establish the affinity of these drugs towards the stratum corneum. The stability of indomethacin and of ibuprofen esters were investigated and the effect of temperature and pH on the decomposition rates were studied. The effect of cetyltrimethylammonium bromide on the alkaline degradation of indomethacin was also followed. In the presence of alcohol, indomethacin alcoholysis was observed and the kinetics of decomposition were subjected to non-linear regression analysis and the rate constants for the various pathways were quantified. The non-isothermal, sufactant non-isoconcentration and non-isopH degradation of indomethacin were investigated. The analysis of the data was undertaken using NONISO, a BASIC computer program. The degradation profiles obtained from both non-iso and iso-kinetic studies show that there is close concordance in the results. The metabolic biotransformation of ibuprofen esters was followed using esterases from hog liver and rat skin homogenates. The results showed that the esters were very labile under these conditions. The presence of propylene glycol affected the rates of enzymic hydrolysis of the ester. The hydrolysis is modelled using an equation involving the dielectric constant of the medium. The percutaneous absorption of indomethacin and of ibuprofen and its esters was followed from solutions using an in vitro excised human skin model. The absorption profiles followed first order kinetics. The diffusion process was related to their solubility and to the human skin/solvent partition coefficient. The percutaneous absorption of two ibuprofen esters from suspensions in 20% propylene glycol-water were also followed through rat skin with only ibuprofen being detected in the receiver phase. The sensitivity of ibuprofen esters to enzymic hydrolysis compared to the chemical hydrolysis may prove valuable in the formulation of topical delivery systems.
Resumo:
The kinetic parameters of the pyrolysis of miscanthus and its acid hydrolysis residue (AHR) were determined using thermogravimetric analysis (TGA). The AHR was produced at the University of Limerick by treating miscanthus with 5 wt.% sulphuric acid at 175 °C as representative of a lignocellulosic acid hydrolysis product. For the TGA experiments, 3 to 6 g of sample, milled and sieved to a particle size below 250 μm, were placed in the TGA ceramic crucible. The experiments were carried out under non-isothermal conditions heating the samples from 50 to 900 °C at heating rates of 2.5, 5, 10, 17 and 25 °C/min. The activation energy (EA) of the decomposition process was determined from the TGA data by differential analysis (Friedman) and three isoconversional methods of integral analysis (Kissinger–Akahira–Sunose, Ozawa–Flynn–Wall, Vyazovkin). The activation energy ranged from 129 to 156 kJ/mol for miscanthus and from 200 to 376 kJ/mol for AHR increasing with increasing conversion. The reaction model was selected using the non-linear least squares method and the pre-exponential factor was calculated from the Arrhenius approximation. The results showed that the best fitting reaction model was the third order reaction for both feedstocks. The pre-exponential factor was in the range of 5.6 × 1010 to 3.9 × 10+ 13 min− 1 for miscanthus and 2.1 × 1016 to 7.7 × 1025 min− 1 for AHR.
Resumo:
The chromosomal ß-lactamase of Pseudomonas aeruginosa SAlconst (a derepressed laboratory strain) was isolated and purified. Two peaks of activity were observed on gel permeation chromatography (one major peak mol. wt. 45 kD and one minor peak of 54 kD). Preparations from 12 clinical derepressed strains showed identical results. Chromosomal ß-lactamase production in both normal and derepressed P. aeruginosa strains was induced both by iron restricted growth conditions and by penicillin G. The majority of the enzyme (80-90%) was found in the periplasm and cytoplasm but a significant amount (2-20%) was associated with the outer membrane (OM). The growth conditions did not affect the distribution of the enzyme between subcellular fractions although higher activity was found in the cells grown under iron limitation and/ or in the presence of ß-lactams. The penicillanate sulphone inhibitor, tazobactam, displayed irreversible kinetics whilst cloxacillin, cefotaxime, ampicillin and penicillin G were all competitive inhibitors of the enzyme. Similar results were obtained for the Enterobacter cloacae P99 [ß-lactamase, but tazobactam displayed a non-classical kinetic pattern for the Staphylococcus aureus PC1 ß-lactamase. The residues involved in ß-lactam hydrolysis by the P aeruginosa SAlconst enzyme were detennined by affinity labelling with tazobactam. A tryptic digestion fragment of the inhibited enzyme contained the amino acids D, T, S, E, P, G, A, C, V, M, I, Y, F, H, K, R. This suggests the involvement of the conserved SVSK, DAE and KTG motifs found in all penicillin sensitive proteins. A model of the 3-D structure of the active site of the P aeruginosa SAlconst chromosomal ß-!actamase was constructed from the published amino acid sequence of P aeruginosa chromosomal ß-lactamase and the a-carbon coordinates of the S. aureus PCI ß-lactamase by homology modelling and energy minimisation. The crystal structure of tazobactam was determined and energy minimised. Computer graphics docking identified Ser 72 as a possible residue involved in a secondary attack on the C5 position of tazobactam after initial ß-lactam hydrolysis by serine 70. The enhanced activity of tazobactam over sulbactam might be explained by the triazole substituent which might participate in favourable hydrogen bonding between N3 and active site residues.
Resumo:
This thesis presents an effective methodology for the generation of a simulation which can be used to increase the understanding of viscous fluid processing equipment and aid in their development, design and optimisation. The Hampden RAPRA Torque Rheometer internal batch twin rotor mixer has been simulated with a view to establishing model accuracies, limitations, practicalities and uses. As this research progressed, via the analyses several 'snap-shot' analysis of several rotor configurations using the commercial code Polyflow, it was evident that the model was of some worth and its predictions are in good agreement with the validation experiments, however, several major restrictions were identified. These included poor element form, high man-hour requirements for the construction of each geometry and the absence of the transient term in these models. All, or at least some, of these limitations apply to the numerous attempts to model internal mixes by other researchers and it was clear that there was no generally accepted methodology to provide a practical three-dimensional model which has been adequately validated. This research, unlike others, presents a full complex three-dimensional, transient, non-isothermal, generalised non-Newtonian simulation with wall slip which overcomes these limitations using unmatched ridding and sliding mesh technology adapted from CFX codes. This method yields good element form and, since only one geometry has to be constructed to represent the entire rotor cycle, is extremely beneficial for detailed flow field analysis when used in conjunction with user defined programmes and automatic geometry parameterisation (AGP), and improves accuracy for investigating equipment design and operation conditions. Model validation has been identified as an area which has been neglected by other researchers in this field, especially for time dependent geometries, and has been rigorously pursued in terms of qualitative and quantitative velocity vector analysis of the isothermal, full fill mixing of generalised non-Newtonian fluids, as well as torque comparison, with a relatively high degree of success. This indicates that CFD models of this type can be accurate and perhaps have not been validated to this extent previously because of the inherent difficulties arising from most real processes.
Resumo:
Traditional wave kinetics describes the slow evolution of systems with many degrees of freedom to equilibrium via numerous weak non-linear interactions and fails for very important class of dissipative (active) optical systems with cyclic gain and losses, such as lasers with non-linear intracavity dynamics. Here we introduce a conceptually new class of cyclic wave systems, characterized by non-uniform double-scale dynamics with strong periodic changes of the energy spectrum and slow evolution from cycle to cycle to a statistically steady state. Taking a practically important example—random fibre laser—we show that a model describing such a system is close to integrable non-linear Schrödinger equation and needs a new formalism of wave kinetics, developed here. We derive a non-linear kinetic theory of the laser spectrum, generalizing the seminal linear model of Schawlow and Townes. Experimental results agree with our theory. The work has implications for describing kinetics of cyclical systems beyond photonics.
Resumo:
The study investigated the potential applications and the limitations of non-standard techniques of visual field investigation utilizing automated perimetry. Normal subjects exhibited a greater sensitivity to kinetic stimuli than to static stimuli of identical size. The magnitude of physiological SKD was found to be largely independent of age, stimulus size, meridian and eccentricity. The absence of a dependency on stimulus size indicated that successive lateral spatial summation could not totally account for the underlying mechanism of physiological SKD. The visual field indices MD and LV exhibited a progressive deterioration during the time course of a conventional central visual field examination both for normal subjects and for ocular hypertensive patients. The fatigue effect was more pronounced in the latter stages and for the second eye tested. The confidence limits for the definition of abnormality should reflect the greater effect of fatigue on the second eye. A 330 cdm-2 yellow background was employed for blue-on-yellow perimetry. Instrument measurement range was preserved by positioning a concave mirror behind the stimulus bulb to increase the light output by 60% . The mean magnitude of SWS pathway isolation was approximately 1.4 log units relative to a 460nm stimulus filter. The absorption spectra of the ocular media exhibited an exponential increase with increase in age, whilst that of the macular pigment showed no systematic trend. The magnitude of ocular media absorption was demonstrated to reduce with increase in wavelength. Ocular media absorption was significantly greater in diabetic patients than in normal subjects. Five diabetic patients with either normal or borderline achromatic sensitivity exhibited an abnormal blue-on-yellow sensitivity; two of these patients showed no signs of retinopathy. A greater vulnerability of the SWS pathway to the diabetic disease process was hypothesized.
Resumo:
We study memory effects in a kinetic roughening model. For d=1, a different dynamic scaling is uncovered in the memory dominated phases; the Kardar-Parisi-Zhang scaling is restored in the absence of noise. dc=2 represents the critical dimension where memory is shown to smoothen the roughening front (a=0). Studies on a discrete atomistic model in the same universality class reconfirm the analytical results in the large time limit, while a different scaling behavior shows up for t
Dimethylsulfoxide oxidizes glutathione in vitro and in human erythrocytes:kinetic analysis by 1H NMR
Resumo:
The interaction of dimethylsulfoxide (Me2SO) with glutathione was investigated under non-equilibrium conditions in solution using 1H NMR and in intact erythrocytes using 1H spin-echo NMR. In solution the reaction was observed to follow second-order kinetics (Rate = k1[glutathione][Me2SO]) at 300 K pH 7.4, ksol = 4.7 × 10-5 mol -1 L1 s-1. In intact erythrocytes the rate constant for the cellular environment, kcell, was found to be slightly larger at 8.1 × 10-5 mol-1 L1 s-1. Furthermore, the reaction of Me2SO with erythrocyte glutathione showed a biphasic dependence on the Me2SO concentration, with little oxidation of glutathione occurring until the Me2SO concentration exceeded 0.5 mol L-1. The results suggest that at lower concentrations, Me2SO can be effectively removed, most probably by reaction with glutathione, which is regenerated by glutathione reductase, although preferential reaction with other cellular components (e.g., membrane or cellular thiols) cannot be ruled out. Thus the concentrations of Me2SO that are commonly used in cryopreservation of mammalian cells (∼1.4 mol L-1) can cause oxidation of intracellular glutathione.
Resumo:
The effect of brittle coating precracking on the fatigue behavior of a high-activity aluminide-coated single-crystal nickel-base superalloy has been studied using hollow cylindrical specimens at test temperatures of 600 °C, 800 °C, and 1000 °C. Three types of precrack were studied: narrow precracks formed at room temperature, wide precracks formed at room temperature, and narrow precracks formed at elevated temperature. The effect of precracking on fatigue life at 600 °C was found to depend strongly on the type of precrack. No failure was observed for specimens with narrow room-temperature precracks because of crack arrest via an oxidation-induced crack closure mechanism, while the behavior of wide precracks and precracks formed at elevated temperature mirrored the non-precracked behavior. Crack retardation also occurred for narrow room-temperature precracks tested at 800 °C - in this case, fatigue cracks leading to failure initiated in a layer of recrystallized grains on the inside surface of the specimen. A significant reduction in fatigue life at 800 °C relative to non-precracked specimens was observed for wide precracks and elevated temperature precracks. The presence of precracks bypassed the initiation and growth of coating fatigue cracks necessary for failure in non-precracked material. No effect of precracking was observed at 1000 °C.
Drying kinetic analysis of municipal solid waste using modified page model and pattern search method
Resumo:
This work studied the drying kinetics of the organic fractions of municipal solid waste (MSW) samples with different initial moisture contents and presented a new method for determination of drying kinetic parameters. A series of drying experiments at different temperatures were performed by using a thermogravimetric technique. Based on the modified Page drying model and the general pattern search method, a new drying kinetic method was developed using multiple isothermal drying curves simultaneously. The new method fitted the experimental data more accurately than the traditional method. Drying kinetic behaviors under extrapolated conditions were also predicted and validated. The new method indicated that the drying activation energies for the samples with initial moisture contents of 31.1 and 17.2 % on wet basis were 25.97 and 24.73 kJ mol−1. These results are useful for drying process simulation and industrial dryer design. This new method can be also applied to determine the drying parameters of other materials with high reliability.