14 resultados para Non equilibrium

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study memory effects in a kinetic roughening model. For d=1, a different dynamic scaling is uncovered in the memory dominated phases; the Kardar-Parisi-Zhang scaling is restored in the absence of noise. dc=2 represents the critical dimension where memory is shown to smoothen the roughening front (a=0). Studies on a discrete atomistic model in the same universality class reconfirm the analytical results in the large time limit, while a different scaling behavior shows up for tnonconservative systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study waveguide fabrication in lithium-niobo-phosphate glass, aiming at a practical method of single-stage fabrication of nonlinear integrated-optics devices. We observed chemical transformations or material redistribution during the course of high repetition rate femtosecond laser inscription. We believe that the laser-induced ultrafast heating and cooling followed by elements diffusion on a microscopic scale opens the way toward the engineering non-equilibrium sates of matter and thus can further enhance Refractive Index (RI) contrasts by virtue of changing glass composition in and around the fs tracks. © 2014 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the dynamics of a growing crystalline facet where the growth mechanism is controlled by the geometry of the local curvature. A continuum model, in (2+1) dimensions, is developed in analogy with the Kardar-Parisi-Zhang (KPZ) model is considered for the purpose. Following standard coarse graining procedures, it is shown that in the large time, long distance limit, the continuum model predicts a curvature independent KPZ phase, thereby suppressing all explicit effects of curvature and local pinning in the system, in the "perturbative" limit. A direct numerical integration of this growth equation, in 1+1 dimensions, supports this observation below a critical parametric range, above which generic instabilities, in the form of isolated pillared structures lead to deviations from standard scaling behaviour. Possibilities of controlling this instability by introducing statistically "irrelevant" (in the sense of renormalisation groups) higher ordered nonlinearities have also been discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conventional differential scanning calorimetry (DSC) techniques are commonly used to quantify the solubility of drugs within polymeric-controlled delivery systems. However, the nature of the DSC experiment, and in particular the relatively slow heating rates employed, limit its use to the measurement of drug solubility at the drug's melting temperature. Here, we describe the application of hyper-DSC (HDSC), a variant of DSC involving extremely rapid heating rates, to the calculation of the solubility of a model drug, metronidazole, in silicone elastomer, and demonstrate that the faster heating rates permit the solubility to be calculated under non-equilibrium conditions such that the solubility better approximates that at the temperature of use. At a heating rate of 400°C/min (HDSC), metronidazole solubility was calculated to be 2.16 mg/g compared with 6.16 mg/g at 20°C/min. © 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis investigates the mechanisms that lead to pole tip recession (PTR) in laminated magnetic recording heads (also known as "sandwich heads"). These heads provide a platform for the utilisation of advanced soft magnetic thin films in practical recording heads suitable for high frequency helical scan tape recording systems. PTR results from a differential wear of the magnetic pole piece from the tape-bearing surface of the head. It results in a spacing loss of the playback or read signal of 54.6dB per recording wavelength separation of the poles from the tape. PTR depends on the material combination used in the head, on the tape type and the climate - temperature and relative humidity (r.h.). Five head materials were studied: two non-magnetic substrate materials- sintered multi granular CaTi03 and composite CaTi03/ZrTi04/Ti02 and three soft magnetic materials- amorphous CoNbZr, and nanocrystalline FeNbSiN and FeTaN. Single material dummy heads were constructed and their wear rates measured when cycling them in a Hi-8 camcorder against commercially available metal particulate (MP) and metal evaporated (ME) tapes in three different climates: 25°C/20%r.h., 25°C/80%r.h. and 40°C/80%r.h. X-ray photoelectron spectroscopy (XPS) was used to examine changes the head surface chemistry. Atomic force microscopy (AFM) was used to examine changes in head and tape surface topography. PTR versus cycling time of laminated heads of CaTi03/ZrTiO4/Ti02 and FeTaN construction was measured using AFM. The principal wear mechanism observed for all head materials was microabrasion caused by the mating body - the tape surface. The variation in wear rate with climate and tape type was due to a variation in severity in this mechanism, except for tape cycling at 40°C in which gross damage was observed to be occurring to the head surface. Two subsidiary wear mechanisms were found: third body scratching (all materials) and grain pullout (both ceramics and FeNbSiN). No chemical wear was observed, though tribochemical reactions were observed on the metal head surfaces. PTR was found to be caused by two mechanisms - the first differential microabrasion of the metal and substrate materials and which was characterised by a low (~10nm) equilibrium value. The second was by deep ploughing by third body debris particles, thought mainly to be grain pullout particles. This level of PTR caused by this mechanism was often more severe, and of a non-equilibrium nature. It was observed more for ME tape, especially at 40°C/80%r.h. and 25°c/20%r.h. Two other phenomena on the laminated head pole piece were observed and commented upon: staining and ripple texturing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The key to the use of polymersomes as effective molecular delivery systems is in the ability to design processing routes that can efficiently encapsulate the molecular payload. We have evaluated various surface rehydration mechanisms for encapsulation, in each case characterizing the morphologies formed using DLS and confocal microscopy as well as determining the encapsulation efficiency for the hydrophilic dye Rhodamine B. In contrast to bulk methods, where the encapsulation efficiencies are low, we find that higher efficiencies can be obtained by the rehydration of thin films. We relate these results to the non-equilibrium mechanisms that underlie vesicle formation and discuss how an understanding of these mechanisms can help optimize encapsulation efficiencies. Our conclusion is that, even considering the good encapsulation efficiency, surface methods are still unsuitable for the massive scale-up needed when applied to commercial mass market molecular delivery scenarios. However, targeting more specialized applications for high value ingredients (like pharmaceuticals) might be more feasible.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dynamics of the non-equilibrium Ising model with parallel updates is investigated using a generalized mean field approximation that incorporates multiple two-site correlations at any two time steps, which can be obtained recursively. The proposed method shows significant improvement in predicting local system properties compared to other mean field approximation techniques, particularly in systems with symmetric interactions. Results are also evaluated against those obtained from Monte Carlo simulations. The method is also employed to obtain parameter values for the kinetic inverse Ising modeling problem, where couplings and local field values of a fully connected spin system are inferred from data. © 2014 IOP Publishing Ltd and SISSA Medialab srl.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interaction of dimethylsulfoxide (Me2SO) with glutathione was investigated under non-equilibrium conditions in solution using 1H NMR and in intact erythrocytes using 1H spin-echo NMR. In solution the reaction was observed to follow second-order kinetics (Rate = k1[glutathione][Me2SO]) at 300 K pH 7.4, ksol = 4.7 × 10-5 mol -1 L1 s-1. In intact erythrocytes the rate constant for the cellular environment, kcell, was found to be slightly larger at 8.1 × 10-5 mol-1 L1 s-1. Furthermore, the reaction of Me2SO with erythrocyte glutathione showed a biphasic dependence on the Me2SO concentration, with little oxidation of glutathione occurring until the Me2SO concentration exceeded 0.5 mol L-1. The results suggest that at lower concentrations, Me2SO can be effectively removed, most probably by reaction with glutathione, which is regenerated by glutathione reductase, although preferential reaction with other cellular components (e.g., membrane or cellular thiols) cannot be ruled out. Thus the concentrations of Me2SO that are commonly used in cryopreservation of mammalian cells (∼1.4 mol L-1) can cause oxidation of intracellular glutathione.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a review of the latest developments in one-dimensional (1D) optical wave turbulence (OWT). Based on an original experimental setup that allows for the implementation of 1D OWT, we are able to show that an inverse cascade occurs through the spontaneous evolution of the nonlinear field up to the point when modulational instability leads to soliton formation. After solitons are formed, further interaction of the solitons among themselves and with incoherent waves leads to a final condensate state dominated by a single strong soliton. Motivated by the observations, we develop a theoretical description, showing that the inverse cascade develops through six-wave interaction, and that this is the basic mechanism of nonlinear wave coupling for 1D OWT. We describe theory, numerics and experimental observations while trying to incorporate all the different aspects into a consistent context. The experimental system is described by two coupled nonlinear equations, which we explore within two wave limits allowing for the expression of the evolution of the complex amplitude in a single dynamical equation. The long-wave limit corresponds to waves with wave numbers smaller than the electrical coherence length of the liquid crystal, and the opposite limit, when wave numbers are larger. We show that both of these systems are of a dual cascade type, analogous to two-dimensional (2D) turbulence, which can be described by wave turbulence (WT) theory, and conclude that the cascades are induced by a six-wave resonant interaction process. WT theory predicts several stationary solutions (non-equilibrium and thermodynamic) to both the long- and short-wave systems, and we investigate the necessary conditions required for their realization. Interestingly, the long-wave system is close to the integrable 1D nonlinear Schrödinger equation (NLSE) (which contains exact nonlinear soliton solutions), and as a result during the inverse cascade, nonlinearity of the system at low wave numbers becomes strong. Subsequently, due to the focusing nature of the nonlinearity, this leads to modulational instability (MI) of the condensate and the formation of solitons. Finally, with the aid of the probability density function (PDF) description of WT theory, we explain the coexistence and mutual interactions between solitons and the weakly nonlinear random wave background in the form of a wave turbulence life cycle (WTLC).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system - spectrally dependent losses - achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin-Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we examine the equilibrium states of finite amplitude flow in a horizontal fluid layer with differential heating between the two rigid boundaries. The solutions to the Navier-Stokes equations are obtained by means of a perturbation method for evaluating the Landau constants and through a Newton-Raphson iterative method that results from the Fourier expansion of the solutions that bifurcate above the linear stability threshold of infinitesimal disturbances. The results obtained from these two different methods of evaluating the convective flow are compared in the neighborhood of the critical Rayleigh number. We find that for small Prandtl numbers the discrepancy of the two methods is noticeable. © 2009 The Physical Society of Japan.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The further development of the use of NMR relaxation times in chemical, biological and medical research has perhaps been curtailed by the length of time these measurements often take. The DESPOT (Driven Equilibrium Single Pulse Observation of T1) method has been developed, which reduces the time required to make a T1 measurement by a factor of up to 100. The technique has been studied extensively herein and the thesis contains recommendations for its successful experimental application. Modified DESPOT type equations for use when T2 relaxation is incomplete or where off-resonance effects are thought to be significant are also presented. A recently reported application of the DESPOT technique to MR imaging gave good initial results but suffered from the fact that the images were derived from spin systems that were not driven to equilibrium. An approach which allows equilibrium to be obtained with only one non-acquisition sequence is presented herein and should prove invaluable in variable contrast imaging. A DESPOT type approach has also been successfully applied to the measurement of T1. T_1's can be measured, using this approach significantly faster than by the use of the classical method. The new method also provides a value for T1 simultaneously and therefore the technique should prove valuable in intermediate energy barrier chemical exchange studies. The method also gives rise to the possibility of obtaining simultaneous T1 and T1 MR images. The DESPOT technique depends on rapid multipulsing at nutation angles, normally less than 90^o. Work in this area has highlighted the possible time saving for spectral acquisition over the classical technique (90^o-5T_1)_n. A new method based on these principles has been developed which permits the rapid multipulsing of samples to give T_1 and M_0 ratio information. The time needed, however, is only slightly longer than would be required to determine the M_0 ratio alone using the classical technique. In ^1H decoupled ^13C spectroscopy the method also gives nOe ratio information for the individual absorptions in the spectrum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The theory of vapour-liquid equilibria is reviewed, as is the present status or prediction methods in this field. After discussion of the experimental methods available, development of a recirculating equilibrium still based on a previously successful design (the modified Raal, Code and Best still of O'Donnell and Jenkins) is described. This novel still is designed to work at pressures up to 35 bar and for the measurement of both isothermal and isobaric vapour-liquid equilibrium data. The equilibrium still was first commissioned by measuring the saturated vapour pressures of pure ethanol and cyclohexane in the temperature range 77-124°C and 80-142°C respectively. The data obtained were compared with available literature experimental values and with values derived from an extended form of the Antoine equation for which parameters were given in the literature. Commissioning continued with the study of the phase behaviour of mixtures of the two pure components as such mixtures are strongly non-ideal, showing azeotopic behaviour. Existing data did not exist above one atmosphere pressure. Isothermal measurements were made at 83.29°C and 106.54°C, whilst isobaric measurements were made at pressures of 1 bar, 3 bar and 5 bar respectively. The experimental vapour-liquid equilibrium data obtained are assessed by a standard literature method incorporating a themodynamic consistency test that minimises the errors in all the measured variables. This assessment showed that reasonable x-P-T data-sets had been measured, from which y-values could be deduced, but that the experimental y-values indicated the need for improvements in the design of the still. The final discussion sets out the improvements required and outlines how they might be attained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we examine the equilibrium states of periodic finite amplitude flow in a horizontal channel with differential heating between the two rigid boundaries. The solutions to the Navier-Stokes equations are obtained by means of a perturbation method for evaluating the Landau coefficients and through a Newton-Raphson iterative method that results from the Fourier expansion of the solutions that bifurcate above the linear stability threshold of infini- tesimal disturbances. The results obtained from these two different methods of evaluating the convective flow are compared in the neighbourhood of the critical Rayleigh number. We find that for small Prandtl numbers the discrepancy of the two methods is noticeable.