5 resultados para Night vision devices
em Aston University Research Archive
Resumo:
This review describes a group of diseases known as the transmissible spongiform encephalopathies (TSEs), which affect animals and humans. Examination of affected brain tissue suggests that these diseases are caused by the acquisition and deposition of prion protein (PrP). Creutzfeldt-Jakob disease (CJD) is the most important form of TSE in humans with at least four different varieties of the disease. Variant CJD (vCJD), a new form of the disease found in the UK, has several features that differ from the classical forms including early age of onset, longer duration of disease, psychiatric presentation (for example, depression) and extensive florid plaque development in the brain. About 10 per cent of patients with CJD exhibit visual symptoms at disease presentation and approximately 50 per cent during the course of the disease. The most commonly reported visual symptoms include diplopia, supranuclear palsies, complex visual disturbances, homonymous visual field defects, hallucinations and cortical blindness. Saccadic and smooth pursuit movements appear to be more rarely affected. The agent causing vCJD accumulates in lymphoid tissue such as the spleen and tonsils. The cornea has lymphoid tissue in the form of corneal dendritic cells that are important in the regulation of the immune response in the anterior segment of the eye. The presence of these cells in the cornea has raised the possibility of transmission between patients via optical devices that contact the eye. Although such transmission is theoretically possible it remains highly improbable.
Resumo:
As technology and medical devices improve, there is much interest in when and how astigmatism should be corrected with refractive surgery. Astigmatism can be corrected by most forms of refractive surgery, such as using excimer lasers algorithms to ablate the cornea to compensate for the magnitude of refractive error in different meridians. Correction of astigmatism at the time of cataract surgery is well developed and can be achieved through incision placement, relaxing incisions and toric intraocular lens (IOL) implantation. This was less of an issue in the past when there was a lower expectation to be spectacle independent after cataract surgery, in which case the residual refractive error, including astigmatism, could be compensated for with spectacle lenses. The issue of whether presurgical astigmatism should be corrected can be considered separately depending on whether a patient has residual accommodation, and the type of refractive surgery under consideration. We have previously reported on the visual impact of full correction of astigmatism, rather than just correcting the mean spherical equivalent. Correction of astigmatism as low as 1.00 dioptres significantly improves objective and subjective measures of functional vision in prepresbyopes at distance and near.
Resumo:
Magnification can be provided to assist those with visual impairment to make the best use of remaining vision. Electronic transverse magnification of an object was first conceived for use in low vision in the late 1950s, but has developed slowly and is not extensively prescribed because of its relatively high cost and lack of portability. Electronic devices providing transverse magnification have been termed closed-circuit televisions (CCTVs) because of the direct cable link between the camera imaging system and monitor viewing system, but this description generally refers to surveillance devices and does not indicate the provision of features such as magnification and contrast enhancement. Therefore, the term Electronic Vision Enhancement Systems (EVES) is proposed to better distinguish and describe such devices. This paper reviews current knowledge on EVES for the visually impaired in terms of: classification; hardware and software (development of technology, magnification and field-of-view, contrast and image enhancement); user aspects (users and usage, reading speed and duration, and training); and potential future development of EVES. © 2003 The College of Optometrists.
Resumo:
PURPOSE: To examine whether objective performance of near tasks is improved with various electronic vision enhancement systems (EVES) compared with the subject's own optical magnifier. DESIGN: Experimental study, randomized, within-patient design. METHODS: This was a prospective study, conducted in a hospital ophthalmology low-vision clinic. The patient population comprised 70 sequential visually impaired subjects. The magnifying devices examined were: patient's optimum optical magnifier; magnification and field-of-view matched mouse EVES with monitor or head-mounted display (HMD) viewing; and stand EVES with monitor viewing. The tasks performed were: reading speed and acuity; time taken to track from one column of print to the next; follow a route map, and locate a specific feature; and identification of specific information from a medicine label. RESULTS: Mouse EVES with HMD viewing caused lower reading speeds than stand EVES with monitor viewing (F = 38.7, P < .001). Reading with the optical magnifier was slower than with the mouse or stand EVES with monitor viewing at smaller print sizes (P < .05). The column location task was faster with the optical magnifier than with any of the EVES (F = 10.3, P < .001). The map tracking and medicine label identification task was slower with the mouse EVES with HMD viewing than with the other magnifiers (P < .01). Previous EVES experience had no effect on task performance (P > .05), but subjects with previous optical magnifier experience were significantly slower at performing the medicine label identification task with all of the EVES (P < .05). CONCLUSIONS: Although EVES provide objective benefits to the visually impaired in reading speed and acuity, together with some specific near tasks, some can be performed just as fast using optical magnification. © 2003 by Elsevier Inc. All rights reserved.
Resumo:
BACKGROUND: Since 1972, the Australian College of Optometry has worked in partnership with Vision Australia to provide multidisciplinary low-vision care at the Kooyong Low Vision Clinic. In 1999, Wolffsohn and Cochrane reported on the demographic characteristics of patients attending Kooyong. Sixteen years on, the aim of this study is to review the demographics of the Kooyong patient cohort and prescribing patterns. METHODS: Records of all new patients (n = 155) attending the Kooyong Low Vision Clinic for optometry services between April and September 2012 were retrospectively reviewed. RESULTS: Median age was 84.3 years (range 7.7 to 98.1 years) with 59 per cent female. The majority of patients presented with late-onset degenerative pathology, 49 per cent with a primary diagnosis of age-related macular degeneration. Many (47.1 per cent) lived with their families. Mean distance visual acuity was 0.57 ± 0.47 logMAR or approximately 6/24. The median spectacle-corrected near visual acuity was N8 (range N3 to worse than N80). Fifty patients (32.3 per cent) were prescribed new spectacles, 51 (32.9 per cent) low vision aids and five (8.3 per cent) were prescribed electronic magnification devices. Almost two-thirds (63.9 per cent) were referred for occupational therapy management and 12.3 per cent for orientation and mobility services. CONCLUSIONS: The profile of patients presenting for low-vision services at Kooyong is broadly similar to that identified in 1999. Outcomes appear to be similar, aside from an expected increase in electronic devices and technological solutions; however, the nature of services is changing, as treatments for ocular diseases advance and assistive technology develops and becomes more accessible. Alongside the aging population and age-related ocular disease being the predominant cause of low vision in Australia, the health-funding landscape is becoming more restrictive. The challenge for the future will be to provide timely, high-quality care in an economically efficient model.