10 resultados para Nickel-titanium alloys

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linear Elastic Fracture Mechanics has been used to study the microstructural factors controlling the strength and toughness of two alpha-beta, titanium alloys. Fracture toughness was found to be independent of orientation for alloy Ti/6A1/4-V, but orientation dependent for IMI 700, bend and tension specimens giving similar toughness values. Increasing the solution temperature led to the usual inverse relationship between strength and toughness, with toughness becoming a minimum as the beta transus was approached. The production of a double heat treated microstructure led to a 100% increase in toughness in the high strength alloy and a 20% increase in alloy Ti/6A1/4V, with little decrease in strength. The double heat treated microstruoture was produced by cooling from the beta field into the alpha beta field, followed. by conventional solution treatment and ageing. Forging above the beta transus led to an increase in toughness over alpha beta forging in the high strength alloy, but had little effect on the toughness of Ti/6A1/4V. Light and electron microscopy showed that the increased toughness resulted from the alpha phase being changed from mainly continuous to a discontinuous platelet form in a transformed beta matrix. Void formation occurred at the alpha-beta interface and crack propagation was via the interface or across the platelet depending on which process required the least energy. Varying the solution treatment temperature produced a varying interplatelet spacing and platelet thickness. The finest interplatelet spacing was associated with the highest toughness, since a higher applied stress was required to give the necessary stress concentration to initiate void formation. The thickest alpha platelet size gave the highest toughness which could be interpreted in terms of Krafftt's "process zone size" and the critical crack tip displacement criterion by Hahn and Rosenfield from an analysis by Goodier and Field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The initiation and early propagation of short fatigue cracks has been studied in detail in two alpha / beta titanium alloys as a function of microstructure. Detailed metallography is presented relating short crack growth rates to the microstructural features present. The work shows the significant differences in short crack propagation rates which can be achieved by microstructural changes within a single alloy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mechanical seals are used extensively to seal machinery such as pumps, mixers and agitators in the oil, petrochemical and chemical industries. The performance of such machinery is critically dependent on these devices. Seal failures may result in the escape of dangerous chemicals, possibly causing injury or loss of life. Seal performance is limited by the choice of face materials available. These range from cast iron and stellited stainless steel to cemented and silicon carbides. The main factors that affect seal performance are the wear and corrosion of seal faces. This research investigated the feasibility of applying surface coating/treatments to seal materials, in order to provide improved seal performance. Various surface coating/treatment methods were considered; these included electroless nickel plating, ion plating, plasma nitriding, thermal spraying and high temperature diffusion processes. The best wear resistance, as evaluated by the Pin-on-Disc wear test method, was conferred by the sprayed tungsten carbide/nickel/tungsten-chromium carbide deposit, produced by the high energy plasma spraying (Jet-Kote) process. In general, no correlation was found between hardness and wear resistance or surface finish and friction. This is due primarily to the complexity of the wear and frictional oxidation, plastic deformation, ploughing, fracture and delamination. Corrosion resistance was evaluated by Tafel extrapolation, linear polarisation and anodic potentiodynamic polarisation techniques. The best corrosion performance was exhibited by an electroless nickel/titanium nitride duplex coating due to the passivity of the titanium nitride layer in the acidified salt solution. The surface coating/treatments were ranked using a systematic method, which also considered other properties such as adhesion, internal stress and resistance to thermal cracking. The sealing behaviour of surface coated/treated seals was investigated on an industrial seal testing rig. The best sealing performances were exhibited by the Jet-Kote and electroless nickel silicon carbide composite coated seals. The failure of the electroless nickel and electroless nickel/titanium nitride duplex coated seals was due to inadequate adhesion of the deposits to the substrate. Abrasion of the seal faces was the principal wear mechanism. For operation in an environment similar to the experimental system employed (acidified salt solution) the Jet-Kote deposit appears to be the best compromise.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The problem of variation in weld crack susceptibility caused by small variations in alloy and impurity elements for the 70-30 cupro-nickel alloy has been investigated. Both wrought and cast versions of the alloy have been studied, the main techniques employed being the Varestraint test and weld thermal simulation. In the wrought alloys, cracking has been found to occur mainly in the weld metal, whilst in the cast alloys cracking is extensive in both weld metal and heat affected zone. The previously reported effects of certain impurities (P,S,Si) in increasing cracking have been confirmed, and it has also been shown that Ti and Zr may both have a crack promoting effect at levels commonly found in cupro-nickels, whilst C can interact with several of the other elements investigated to produce a beneficial effect. The testing carried out using the weld thermal simulator has shown that a relationship does exist between hot ductility and weld cracking. In particular, the absence of the peak in ductility in the range 1100°C-900°C on cooling from a temperature near to the solidus is indicative of a highly crack susceptible alloy. Principal practical implications of the investigation concern the relationship of weld metal cracking to alloy composition, especially the level of certain impurities. It would appear that the upper limits permitted by the alloy specifications are unrealistically high. The introduction of lower impurity limits would alleviate the current problems of variability in resistance to cracking during welding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The turbocharging of diesel engines has led to increase in temperature, load and corrosive attack of plain bearings. To meet these requirements, overlay plated aluminium alloys are now preferred. Currently, lead-tin alloys are deposited using a zincate layer and nickel strike, as intermediate stages in the process. The nickel has undesirable seizure characteristics and the zincate can given rise to corrosion problems. Consequently, brush plating allows the possible elimination of these stages and a decrease in process together with greater automation. The effect of mode application, on the formation of zincate films, using film growth weight measurements, potential-time studies, peel adhesion testing and Scanning Electron Microscopy was studied, for both SIC and AS15 aluminium alloys. The direct plating of aluminium was also successfully achieved. The results obtained indicate that generally, although lower adhesion resulted when a brush technique was used, satisfactory adhesion for fatigue testing was achieved. Both lead-tin and tin-cobalt overlays were examined and a study of the parameters governing brush plating were carried out using various electrolytes. An experimentally developed small scale rig, was used to produce overlay plated bearings that were fatigue tested until failure. The bearings were then examined and an analysis of the failure mechanisms undertaken. The results indicated that both alloy systems are of the regular codeposition type. Tin-cobalt overlays were superior to conventional lead-tin overlays and remained in good condition, although the lining (substrate) failed. Brush plated lead-tin was unsatisfactory. Sufficient understanding has now been gained, to enable a larger scale automated plant to be produced. This will allow a further study of the technique to be carried out, on equipment that more closely resembles that of a full scale production process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aluminium alloys S1C, NS4, HE9, LM25 and the 'difficult' zinc containing U.S. specification alloy used for automobile bumpers (X-7046), have been successfully electroplated using pretreatments which utilized either conventional immersion, elevated temperature or electrolytic modified alloy zincate (M.A.Z.) deposits. Satisfactory adhesion in excess of 7•5 KN m -I was only achieved on X-7046 using an electrolytic M.A.Z. pretreatment. The limitations of simple zincate solutions were demonstrated. Growth of deposits ~as monitored using a weight loss technique and the morphology of the various deposits studied using scanning electron microscopy. The characteristics of a specific alloy and processing sequence selected had a significant influence on the growth and morphology of the N.A.Z. deposi t. These all affected subsequent adhesion of electrodeposited nickel. The advantages of double-dip sequences were confirmed. Superior adhesion was associated with a uniform, thin, fine grained M.A.Z. deposit which exhibited rapid and complete surface coverage of the aluminium alloy. The presence of this preferred type deposit did not guarantee adhesion because a certain degree of etching was essential. For a satisfactory combination of alloy and M.A.Z. pretreatment, there was a specific optimum film weight per unit area which resulted in maximum adhesion. An ideal film weight of 0•06 :!: 0•01 mg cm-2was determined for S1C. Different film weights were required for the other alloys due to variations in surface topography caused by pretreatment. S1C was the easiest alloy on which to achieve high bond strength. Peel adhesion was not directly related to tensile strength of the alloy. The highest adhesion value was obtained on S1C which had the lowest strength of the alloys studied. The characteristics of the failure surfaces after peeling depended on alloy type, adhesion level and pretreatment employed. Plated aluminium alloys exhibited excellent corrosion resistance when appropriately pretreated. The M.A.Z. layer was not preferentially attacked. There was a threshold value of adhesion below which corrosion performance ~a8 poor. Alloy type, pretreatment and coating system influenced corrosion performance. Microporous chromium gave better corrosion protection than decorative chromium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have used a high-energy ball mill to prepare single-phased nanocrystalline Fe, Fe90Ni10, Fe85Al4Si11, Ni99Fe1 and Ni90Fe10 powders. We then increased their grain sizes by annealing. We found that a low-temperature anneal (T < 0.4 Tm) softens the elemental nanocrystalline Fe but hardens both the body-centered cubic iron- and face-centered cubic nickel-based solid solutions, leading in these alloys to an inverse Hall–Petch relationship. We explain this abnormal Hall–Petch effect in terms of solute segregation to the grain boundaries of the nanocrystalline alloys. Our analysis can also explain the inverse Hall–Petch relationship found in previous studies during the thermal anneal of ball-milled nanocrystalline Fe (containing ∼1.5 at.% impurities) and electrodeposited nanocrystalline Ni (containing ∼1.0 at.% impurities).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pack aluminide coating is a useful method for conferring oxidation resistance on nickel-base superalloys. Nominally, these coatings have a matrix composed of a Ni-Al based B2-type phase (commonly denoted as Β). However, following high-temperature exposure in oxidative envi-ronments, aluminum is depleted from the coating. Aluminum depletion in turn, leads to de-stabilization of the Β phase, resulting in the formation of a characteristic lathlike Β-derivative microstructure. This article presents a transmission electron microscopy study of the formation of the lathlike Β-derivative microstructure using bulk nickel aluminides as model alloys. In the bulk nickel aluminides, the lathlike microstructure has been found to correspond to two distinct components: L10-type martensite and a new Β derivative. The new Β derivative is characterized and the conditions associated with the presence of this feature are identified and compared with those leading to the formation of the L10 martensitic phase. © 1995 The Minerals, Metals & Material Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An investigation, employing edge-on transmission electron microscopy, of the microstructure of aluminide diffusion coatings on a single crystal y' strengthened nickel base super alloy is reported. An examination has been made of the effect of postcoating exposure at 1100°C on the stability of the coating matrix, a B2 type phase, nominally NiAl. Precipitation in the coating is considered with respect to both decomposition of the B2 matrix to other Ni-Al (plus titanium) phases and the formation of chromium bearing precipitates. A comparison is drawn with behaviour at lower temperatures (850-950°C). © 1995 The Institute of Materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper provides a description of the features and mechanisms of facetted short crack growth in Ni-base superalloys, and briefly reviews existing short crack growth models in terms of their application to Ni-base alloys. The concept of “soft barriers” is introduced to produce a new two-phase model for local microstructural effects on short crack growth in Waspaloy. This is derived from detailed observations of crack growth through individual grains. The model differs from all previous approaches in highlighting the importance of crack path perturbations within grains. Potential applications of the model in alloy development are discussed.