1 resultado para Newfoundland and Labrador
em Aston University Research Archive
Resumo:
The sulphide mineralisation at Avoca and Parys Mountain is intimately related to volcanism and is of volcanogenic sedimentary type. The associated volcanics are predominantly pyroclastics of rhyodacitic composition and of Upper Ordovician age. They were erupted from discrete small volcanic centres, products of single local volcanic events, whose spatial distribution was related to fractures in the sialic basement of the paratectonic Caledonides of the British Isles. These fractures resulted in linear controls on volcanic, plutonic and tectonic features; they are the result of predominantly strikeslip stresses generated in this part of the European plate during closure of the Iapetus ocean. The mineralisation, predominantly pyritic, consists of a siliceous footwall zone containing bedded and cross-cutting sulphides and an overlying non-siliceous zone of bedded sulphides which may show vertical zoning of metal ratios. The sulphides are associated with chert and iron formation and have been affected by slumping. Mineralisation developed near the vents during intense fumarolic activity accompanying strong volcanism; at Parys Mountain, fumarolic activity commenced prior to, and continued after, the rnain volcanic event. Comparison with similar deposits in Newfoundland and at Bathurst, in the Canadian Appalachians, shows that mineralisation can be associated with any discrete pulse of acid magmatism in shallow subaqueous conditions. Local features of the sulphides and associated sediments are similar, although in more distal deposits (with respect to a volcanic centre) footwall alteration and mineralisation are less well developed. The nature of the basement and the presence or absence of earlier volcanics are not critical, although establishment of a local tensional regime at the time of ore formation may be important. The volcanics hosting mineralisation are rhyodacitic pyroclastics, generally related to a small centre and representing a single episode of volcanism.